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BAYESIAN INFERENCE FOR FIELLER-CREASY
PROBLEM USING UNBALANCED DATA'

Woo Done Lee!, DAL Ho Kim? AND SANG GIL KANG?

ABSTRACT

In this paper, we consider Bayesian approach to the Fieller-Creasy prob-
lem using noninformative priors. Specifically we extend the results of Yin
and Ghosh (2000) to the unbalanced case. We develop some noninformative
priors such as the first and second order matching priors and reference pri-
ors. Also we prove the posterior propriety under the derived noninformative
priors. We compare these priors in light of how accurately the coverage prob-
abilities of Bayesian credible intervals match the corresponding frequentist
coverage probabilities.

AMS 2000 subject classifications. Primary 62F15; Secondary 62F25.
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1. INTRODUCTION

The Fieller-Creasy problem involves statistical inference about the ratio of two
independent normal means. It is a challenging problem from either a frequentist
or a likelihood perspective. As an alternative, we consider Bayesian analysis with
noninformative priors for this problem.

Bayesian analysis for the original Fieller-Creasy problem based on noninfor-
mative priors began with Kappenman et al. (1970), and was addressed subse-
quently in Bernardo (1977), Stephens and Smith (1992), Liseo (1993), Philipe
and Robert (1998), Reid (1996) and Berger et al. (1999). All these papers con-
sidered either Jeffreys’ prior or reference priors. A Bayesian analysis based on
proper priors for this problem was given in Carlin and Louis (2000).
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Recently, Yin and Ghosh (2000) developed the noninformative priors for
Bayesian and likelihood-based inferences in the more generalized Fieller-Creasy
setting of two location-scale models. But they considered only the balanced case.
In reality there might be a necessity of the noninformative priors for the objective
Bayesian analysis using unbalanced data.

The present paper focuses on developing noninformative priors for the Fieller-
Creasy problem in the unbalanced case. We consider Bayesian priors such that
the resulting credible intervals for the ratio of two normal means have coverage
probabilities equivalent to their frequentist counterparts. Although this matching
can be justified only asymptotically, our simulation results indicate that this is
indeed achieved for small or moderate sample sizes as well.

This matching idea goes back to Welch and Peers (1963). Interest in such
priors revived with the work of Stein (1985) and Tibshirani (1989). Among
others, we may cite the work of Ghosh and Mukerjee (1992), Mukerjee and Dey
(1993), Datta and Ghosh (1995a), Datta and Ghosh (1995b, 1996), Datta (1996),
Mukerjee and Ghosh (1997) and Kim et al. (2005, 2006).

On the other hand, Ghosh and Mukerjee (1992) and Berger and Bernardo
(1989, 1992) extended Bernardo’s (1979) reference prior approach, giving a gen-
eral algorithm to derive a reference prior by splitting the parameters into several
groups according to their order of inferential importance. This approach is very
successful in various practical problems. Quite often reference priors satisfy the
matching criterion described earlier.

The outline of the remaining sections is as follows. In Section 2, we derive
first order and second order probability matching priors for the ratio of two
normal means. Also we derive reference priors for different groups of ordering
for the parameters. It turns out that among the reference priors, only two group
reference prior satisfies a second order probability matching criterion. In Section
3, we provide the propriety of the posterior distribution for a general class of
prior distributions which include all reference priors. In Section 4, simulated
frequentist coverage probabilities under the proposed priors are investigated.

2. NONINFORMATIVE PRIORS

Let (X1,X2,...,X5) and (Y1,Y2,...,Yy,) be two independent random sam-
ples from N(u,0%) and N(6u,0?), respectively. Here the parameter of interest is
0, the ratio of means.

In order to find probability matching priors, it is convenient to introduce an
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orthogonal parametrization (Cox and Reid, 1987; Tibshirani, 1989). To this end,
let

61=0, 62=upuln+ m02)1/2 and 65 = >

With this parametrization, the likelihood function is given by

_N/2 1 | _
L(61,0,,03) o 65 /2 % exp {-2—0; {;{ﬂh — 02(n + mb}) 712}
+ Z{yj — 9192(71 + mﬂf)“l/z}z ; (21)
j=1

where N = n+m. From the above likelihood function (2.1), the Fisher informa-
tion matrix is given by

05'02nm(n+mé?)=2 0 0

0 61 0

I= 3
N
0 0 20

Following Tibshirani (1989), the class of a first order probability matching prior
is given by
747 (81,82, 05) o (621652 (n +m82) g (62, 03), (2.2)

where g(-,-) is an arbitrary positive and differentiable function in its arguments.

Since the class of the first order probability matching prior is quite large,
one needs to narrow down this class. Specially, Murkerjee and Ghosh (1997)
developed a second order probability matching prior. Among the first order

matching prior, the second order matching prior satisfies the following differential
equation.

3 3
590020 {151} + 33 {1 L 00,00} =0, (23)

v=2 s=2

where I;; is the (4,5)™" element of Fisher information matrix, I*V is the (i, 7)™
element of inverse of Fisher information matrix,

_ 8log L(61,62,03)\° . [8%log L(61,62,65)
=8 [( 0, and Lije = B\ =50 96.00, |

After some algebraic calculations, one can get

122 — 93 123 — I32 =0 I33 — 29%
’ ’ n+m’
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Li11=0,L112 = —nm0203_1(n + mﬂf)"2 and L3 = nm0%0§2(n + m#) 2,
Then the differential equation (2.3) reduces to

200 0 12
— 63) = 0.
n +m 003 03 9(02’ 3) 0

12 O
“93/ 5@9(92,93) +

A solution of the above equation is

_1/2 03
9(02,63) =0, "“h +0s),

n-+m

where h(-) is an arbitrary positive differentiable function in its arguments. So, if
one takes h(-) = 1, then the second order probability matching prior is given by

7D (81,05, 05) = 62165 (n + m2) 1. (2.4)

REMARK 2.1. The second order matching prior given in (2.4) is not an al-
ternative coverage probability matching prior introduced by Mukerjee and Reid
(1999). The alternative coverage probability matching priors is the prior such that
the probability for a confidence set to include an alternative value of the interest-
ing parameter matches true coverage asymptotically. Mukerjee and Reid (1999)
gave the simple differential equations that a second order probability matching
prior matches alternative coverage probabilities up to the second order. But in
our case we can easily show that some conditions are not satisfied.

REMARK 2.2. Datta (1996) showed that if 11_13/ 2L111 does not depend on
61, then the second order matching prior is highest posterior distribution (HPD)
matching prior within the first order matching priors. But the second order
matching prior given in (2.4) is not a HPD matching prior.

Following Datta and Ghosh (1995b), the reference prior introduced by Berger
and Bernardo (1989) can be obtained easily from the information matrix, if pa-
rameters orthogonality is satisfied. From the information matrix, the reference
priors by the order of inferential importance are given as follows:

THE ORDER OF IMPORTANCE REFERENCE PRIOR
({61}, {62}, {65}) Tr(01,02,03) o (n+mbi)Tl65"
({61,623, {6:}) mR(61,02,03) o< (n+mbi)T1057 |0,
({61,65,65}) 7%(01,02,03) o (n+mbT) 105202

({61}’{02703})»({01703}?{62})$({02’03}v{01}) 77}1'?,(01702793) X (n+m0%)—193—3/2

Note that, the prior w}% is called the one-at-a-time reference prior. The two
group reference prior 7r}22 is actually the second order matching prior. And 77%t is
Jeffreys’ prior.
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3. PROPRIETY OF POSTERIORS

In this section, we will show the propriety of posterior distributions under
various noninformative priors given in the previous section. The noninformative

priors proposed in the previous section can be represented in a general form as
follows:

7q(01,02,03)  (n +mb?) 710|265, (3.1)

where ¢ = 0,1 and b = 1/2,1,3/2,2. Using the above prior, the joint posterior
of 61, 03 and 65 is given by

wG(6h, 02, 03lz,y) < (n+ mg%)—1\02\a9;(N/2+b)
X exp —i [Sx + sy + n{'f —_ 92(71 + mg%)—l/2}2
203
+m{g— 010(n+ moD)/2y7] ).

Let 8 = 61, p = Oa(n +mb})~1/2 and 7 = 03 1. Then the above joint posterior
changes to

760, 1, 7lz, y) o |ul®(n +mo?) T T3 (32)
T —
X exp {—5 [Sx -+ Sy + n(_x‘ — u)2 + m(y — 0#)2]} .
Now, we will consider the propriety of the posteriors given by (3.2).

THEOREM 3.1. If N/2+b—3/2 > 0, then the joint posterior distribution of
0, u and T is proper.

PROOF. For the convenance, we consider the proof with respect to the values
of a. When a = 0, the posterior is given by

By integrating with respect to u, one gets

-1 Nyp_ 5 T nm(y_%)2
76(0, 7|z y) o< (n+mo?) T r Tt zexp{_§ (%“ﬁmr '
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Next by integrating with respect to 7, it follows that if N/2+b—3/2 > 0,

nm(y — 07)> ~(F+-3)
mz_—}

nm(y — 0x)> } ~(3+-9)
( mé) sz + 59)

ng(flz,y) o« (n+ m02)_l [sz + sy +

x (n+md?)~! [1 +

< (n+md*)~t

N —
since [1 + {nm(y — 6Z)*}/{(n + mb6?)(s; + s)}] ~(345-3) < 1. Finally the inte-
gration with respect to 6 results in

/ L gV

o +mé2 7w

Hence the posterior distribution is proper when a = 0.
When a = 1, the joint posterior is given by

76 (0, w7z, y) o ulr 3 P2 exp {—7 55 + 8y + (3 — w)? + m(7 ~ )?] }
7(n + mb?) nZ + Omy \ 2
« |p|exp{ - B—

2 n + mo?2

T — O0F)2
x 1% +b=2 exp {—% (sm + sy + nm(y — 67)° ) } .

n + m@?

It is well known that

o o] (z )2 2 2 2
/ |z|e™ 27 dz = o2 {26_%7+\/ ulls Er f( M2>},
—o0 20

where Erf(a fo (1/v2m)e —a?/ 2dz, with a > 0. Using this result, the integra-
tion with respect to p results in

/°° 1l _T(n+m92) _ nT+0my 2
—oo Hexp 2 n + mé?2

T ;zsii”;é’f}

T(nT + 6’my)2 | T(nT + fmy)?
+Var 2(n+me?) ( 2(n + mb?) )}
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Since 7 > 0, exp{—T(nf-}—0m§)2/2(n+m02)} < 1 and Erf(:) < 1, the joint
posterior distribution of 8 and 7 is bounded by

7TG(9a7'|f_E_7Q)
N
T2+6-3 7(nT + mo7y)?
< I o4 Jog, [TARE T MIY)”
~ n+mb? { Ve (n + m6?)
P12 ey n + mé?
T3 1 (T 67)?
T2H= nm(y — 0
=9 = Y — L)
n+m02eXp{ 2T(8z+8y+ n + mb? )}

N

) 216—-3 — 2 T — 0% 2

N V2rT23 [(nZE 4+ méy) exp | - T (e oy + nm(y — 0%)
n + m? (n + m?) n + mb?

Integration with respect to 7 in the right side of the last equality is proportional

to

2\—1
(n + mb*) [sz+sy+ "y,

- —-(F+0-3) — 2
-1 nm(y — 67)2] 2" 2 [(nT + mby)
+(n 4+ mb*) l:sz+sy+——n+m02 T

Now, the first term of the above quantity is proportional to

nm(y — %)2] ~(F+b-2)

nm(y — 07)*

—(F+b-2)
n + mo? ]

(n +m6?)~1 [sz + sy +

nm(y — 07)?
(n+mb2)(sz + sy)

—(Z+b-2)
o (n+mo?)~? [1 + }

< (n+mb*)1,

which the integration with respect to 6 results in a finite value. And the second
term is proportional to

14 mie 2% r%*”‘%) 1 -+ mby
(n+mb2)(sz + sy) (n+ m02)%
< |ni+m0@3|
(n+mb?)2
nz] Imy]

= + .
(n+mh2)2  (n+mb2)t
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Since

b 1 2 o0 |6 2
df = and Tdf = ,
-0 (n + m#?)2 nym —co (n + m#@?)2 myn
this completes the proof. 1

Under the prior mg, the marginal posterior density function of € is given by

a1
(0], ) O(/°° |p|%(n + mb?) 2

Nyp—
~o0 [ + sy + (T — )2 + m(7 — Op)2) 707
The normalizing constant for the marginal posterior density of 6 requires two-

dimensional integration.

4. SIMULATION RESULTS

In this section, we perform some simulations to compare the frequentist cov-
erage probabilities with respect to the priors given in the previous section. We
calculate the frequentist coverage probabilities by investigating the credible in-
tervals of the marginal posterior density of 6 under the proposed priors 7g for
several values of 8, n and m. We show numerically how the frequentist coverage
of a (1 — a)™ posterior quantile is close to 1 — a.

To find the estimated coverage probabilities, we use Markov Chain Monte
Carlo (MCMCQ) numerical integration. We describe the details for MCMC. In the
joint posterior distributions given in (3.2), let w = fu. Then the joint posterior
distribution of w, 1 and 7 is given by

ma(w, iy 7|2, y) o (np® + mwz)a_gl‘q-%”—?
X exp {_% [52 + sy + (T — p)* + m(7 — w)2]} )
This leads to the full conditionals
wlu, T, z,y X (n,u2 + mw2)aT_l exp _% [m(y _ w)2] } ’

a— T
plo, 7,2,y o (nu® + mwz)Tl exp {~-2- [n(@ — #)2] } ,

N 1
E+b—2,§[sx+sy+n(f—y)2+m(§—w)2]>,

Tlw, u,z,y ~ T (T
where a probability density function I'(z|b, ¢) is given by
b

c

mxb_l exp(—bz).
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TABLE 4.1 The estimated coverage probabilities for 8 = 0.1
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TR

0.05

0.95

2

TR

0.05

0.95

3

TR

0.05

0.95

TR

0.05

0.95

10
15
20

10
15
20
25

0.0012
0.0013
0.0010
0.0015

0.9953
0.9964
0.9967
0.9960

0.0029
0.0029
0.0026
0.0030

0.9913
0.9917
0.9927
0.9920

0.0044
0.0024
0.0038
0.0032

0.9883
0.9901
0.9922
0.9915

0.0014
0.0023
0.0011
0.0019

0.9946
0.9955
0.9972
0.9964

10
15
20

10
15
20
25

0.0176
0.0273
0.0349
0.0421

0.9732
0.9653
0.9566
0.9569

0.0258
0.0357
0.0412
0.0479

0.9635
0.9558
0.9488
0.9520

0.0366
0.0460
0.0525
0.0514

0.9539
0.9441
0.9482
0.9507

0.0203
0.0358
0.0401
0.0457

0.9736
0.9622
0.9580
0.9523

10
15
20

10
15
20
25

0.0505
0.0451
0.0447
0.0498

0.9491
0.9518
0.9470
0.9517

0.0506
0.0450
0.0446
0.0496

0.9491
0.9517
0.9466
0.9516

0.0641
0.0578
0.0571
0.0520

0.9375
0.9400
0.9464
0.9502

0.0577
0.0558
0.0540
0.0519

0.9470
0.9463
0.9493
0.9464

u =100

10
15
20

10
15
20
25

0.0505
0.0449
0.0446
0.0497

0.9490
0.9517
0.9466
0.9516

0.0497
0.0480
0.0477
0.0497

0.9514
0.9510
0.9493
0.9516

0.0638
0.0568
0.0570
0.0520

0.9361
0.9425
0.9428
0.9502

0.0586
0.0536
0.0559
0.0519

0.9453
0.9434
0.9476
0.9464

TABLE 4.2 The estimated coverage probabilities for 8 = 100

TR

0.05

0.95

2

TR

0.05

0.95

3

TR

0.05

0.95

TR

0.05

0.95

©=0.1

10
15
20

10
15
20
25

0.0000
0.0000
0.0000
0.0000

0.6812
0.8035
0.8522
0.8753

0.0000
0.0000
0.0000
0.0000

0.6815
0.8030
0.8522
0.8750

0.0000
0.0000
0.0000
0.0000

0.6783
0.8154
0.8466
0.8707

0.0000
0.0000
0.0000
0.0000

0.6852
0.8089
0.8508
0.8780

10
15
20

10
15
20
25

0.0006
0.0040
0.0205
0.0408

0.9471
0.9490
0.9465
0.9492

0.0005
0.0045
0.0182
0.0408

0.9507
0.9479
0.9508
0.9492

0.0005
0.0070
0.0255
0.0400

0.9344
0.9457
0.9440
0.9407

0.0007
0.0047
0.0233
0.0418

0.9414
0.9443
0.9450
0.9467

pn=10

10
15
20

10
15
20
25

0.0514
0.0507
0.0483
0.0497

0.9478
0.9492
0.9465
0.9492

0.0469
0.0513
0.0511
0.0497

0.9489
0.9532
0.9504
0.9492

0.0641
0.0526
0.0538
0.0494

0.9350
0.9457
0.9440
0.9407

0.0592
0.0510
0.0558
0.0507

0.9424
0.9443
0.9450
0.9467

p=100

10
15
20

10
15
20
25

0.0530
0.0486
0.0482
0.0497

0.9523
0.9456
0.9483
0.9492

0.0508
0.0509
0.0508
0.0497

0.9494
0.9502
0.9485
0.9492

0.0615
0.0569
0.0526
0.0494

0.9416
0.9363
0.9439
0.9407

0.0585
0.0540
0.0540
0.0507

0.9427
0.9470
0.9498
0.9468
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Sice the conditionals of w and u given the rest are nonstandard distributions,
the Metropolis-Hasting algorithm is used to generated samples from these condi-
tionals following Chib and Greenberg (1995). Discarding the first 5,000 samples,
we compute the 0.05% and 0.95" percent posterior quantiles from a sample of
size 10,000 and also repeate the iterations 10,000 times to estimate the coverage
probabilities.

In this simulation, we fix ¢ = 1, and we take u = 0.1,1,10,100 and § =
0.1,100. The sample sizes are (n,m) = (5,10), (10, 15), (15, 20) and (20,25). The
results are summarized in Table 4.1 and Table 4.2. In these tables, we use the
following notations for priors:

w}z : one at a time reference prior,

n%z : two group reference prior, Second order probability matching prior,
71'%”2 : one group reference prior, Jeffreys’ prior and

7rj§ : two group reference prior.

It is clear from the tables that the second order matching prior performs
better than any other priors in matching the target coverage probabilities. And
the reference prior 71'%3 is comparable to the second order matching prior 7r122.

It appears also from our results that when p = 0.1, the values of the frequentist
coverage probabilities are far from target probabilities. The poor performance
of all the priors for certain regions of the parameter value is not very surprising.
Gleser and Hwang (1987, Theorem 1) show that based on any sample of arbitrary
but fixed size, there is a positive probability that confidence interval is infinite
set. In our case, this poor performance happens when |u| = 0.
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