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A MEASURE OF ROBUST ROTATABILITY FOR
SECOND ORDER RESPONSE SURFACE DESIGNS!

RABINDRA NATH Das! AND SUNG HYUN PARK?

ABSTRACT

In Response Surface Methodology (RSM), rotatability is a natural and
highly desirable property. For second order general correlated regression
model, the concept of robust rotatability was introduced by Das (1997). In
this paper a new measure of robust rotatability for second order response
surface designs with correlated errors is developed and illustrated with an
example. A comparison is made between the newly developed measure with
the previously suggested measure by Das (1999).

AMS 2000 subject classifications. Primary 62K20; Secondary 05B30.
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1. INTRODUCTION

Response Surface Methodology (RSM) is a collection of mathematical and
statistical techniques useful for analyzing problems where several independent
variables influence a dependent variable. The independent variables are often
called the input or explanatory variables and the dependent variable is often
called the response variable. Rotatability is one of the desirable characteristics
of RSM. This was formally developed by Box and Hunter (1957), assuming the
errors in the observations are uncorrelated and homoscedastic. Rotatability of
different orders in connection with response surface designs have been studied
extensively by a host of authors beginning with Box and Hunter (1957) in the
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context of uncorrelated and homoscedastic errors. A literature survey of RSM is
given by Myers et al. (1989).

In recent years, interests in RSM have been increased and books on this sub-
ject have been written by some authors such as Box and Draper (2007), Khuri and
Cornell (1996), Pukelsheim (1993), Myers and Montgomery (2002), etc. Analo-
gous to rotatability, the concept of slope-rotatability has been advanced by Hader
and Park (1978) and Park (1987). Kim and Park (2006) studied slope rotatability
of icosahedron and dodecahedron designs. All the literature for RSM was given
assuming the errors in the observations are uncorrelated and homoscedastic.

So far all the authors studied rotatable designs and slope rotatable designs
assuming errors to be uncorrelated and homoscedastic. However, it is not uncom-
mon to come across practical situations when the errors are correlated, violating
the usual assumptions. Several authors such as Kiefer and Wynn (1981, 1984),
Gennings et al. (1989), Bischoff (1992, 1995), Panda and Das (1994), Das (2003b,
2004), Das and Park (2006), etc., mentioned some references where errors are cor-
related. In Panda and Das (1994), a study of rotatable designs with correlated
errors was initiated and a systematic study of first order rotatable designs was
attempted for various correlated structures of the errors. In Das (1997), a study
of Robust Second Order Rotatable Designs (RSORD) was introduced. Herein,
rotatability conditions for second order regression designs were derived for gen-
eral correlated error structure. Robust rotatable designs were derived for different
correlation structures of errors by Das (2003b, 2004). Analogous to robust ro-
tatability as introduced by Das (1997), the concept of robust slope-rotatability
has been introduced by Das (2003a). Mukhopadhyay et al. (2002) used robust
designs for improving the quality of a system in the reliability theory. Das and
Park (2006) introduced slope rotatability over all directions for correlated errors.

In RSM, a natural and desirable property is that of rotatability, which requires
that the variance of a predicted response at a point remains constant at all
such points that are equidistant from the design center. To achieve stability
in prediction variance, this important property of rotatability was evolved. If
circumstances are such that exact rotatability is unattainable — because of more
cost and time, and more important restrictions such as orthogonal blocking, it is
still a good idea to make the design as rotatable as possible. Thus it is important
to measure the extent of deviation from rotatability. The measure of rotatability
for a design under ordinary (i.e., with uncorrelated and homoscedastic errors)
regression model was assessed by Draper and Guttman (1988), Khuri (1988),
Draper and Pukelsheim (1990), Park et al. (1993), and a measure for stability of
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slope estimation is suggested by Park et al. (2003).

In case of uncorrelated regression model the rotatability property remains
unaltered if the design points of a rotatable design are permuted (i.e., the or-
der of experiments) in any manner. But in case of correlated regression model,
rotatability may be distorted for some permutation of design points. Again the
permutation of design points may be required to reduce the cost and time of
the experiment. All these notions are explained with an illustrative example in
Sections 2.4 and 3.2. For correlated regression model, the measure of robust
rotatability of a first order regression design was developed by Panda and Das
(1994) and second order regression design was suggested by Das (1999). For ready
reference we have given some of our earlier results which are related in this paper
in Sections 2.3, 2.4 and 2.5 following Das (1997) and Das (1999), respectively.

In this paper, we have developed a new measure of robust rotatability of a
second order regression design under a fixed pattern of correlation structure of
observations. This measure has been developed by following Park et al. (1993).
Robustness of usual Second Order Rotatable Designs (SORD) can be examined
with this new measure. A comparison is made between the newly developed
measure with the previously suggested measure.

2. SECOND ORDER REGRESSION MODEL WITH CORRELATED ERROR

2.1. Model
Suppose there are k factors x = (z1,%2,..., %) which yield a response of
Yy, on the study variable y when x = xou = (1w, Z2u,-- > Thu) 1 < u < N,

Assuming that the response surface is of second order, we adopt the model:

k k

Yu = Bo+ Zﬁzxw + Z Z Bijxiuxju +ey 1<usN
i=1 i<j=1

or

Y = XB+e, (2.1)
where Y is the vector of recorded observations on the study variable y,

,3: (,80, ﬁll, ,622,...,,8kk, ﬁl, 627"'7/814:’ ﬂ127 ﬂl3a""/@(’€—l)k)l

is the vector of regression coefficients of order (’“52) x1, X = (1: Z) is the design
matrix,

7 = (Xl ®1X1,. .., X D1 Xp, X1, -+ -, Xk, X1 ®1 X2,...,Xk—1 ®1Xk),
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/ .
X; = (i1, T2, ..., 2iN), 1 <1<k,

/ . .
X, @1 X5 = (:cille,a:iga:jg, . ,xiN.'z;jN) , 1<, j<k.

Here ®; denotes the Hadamard product of two matrices of the same order
and it is defined as follows. Let Lo = ((as;)) and My = ((b;;)) be two matrices of
the same order, say p x q. The Hadamard product Lo ®1 Mg of Ly and My is a
matrix H, of order p x ¢, where H = ((a;;bi;)).

Further, e is the vector of errors (of order N x 1) which are as assumed to
be normally distributed with E(e) = 0 and D(e) = W with rank (W) = N.
The matrix W may represent any structure with correlated errors for example,
W = [0*{pl"71} 1< i j< n] which is known as autocorrelated error structure. In
general, the matrix W is unknown but for all the calculations as usual, W is
assumed to be known. In practice, however, W includes a number of parameters
unknown, and in the calculations which follow, the expressions for W and W1
are replaced by those obtained by replacing the unknown parameters by their
suitable estimates or some assumed values.

2.2. Analysis

We will assume X’W X is positive definite, when W is known. The best
linear unbiased estimator of 8 is 8 = (X'W~1X)~1(X'W~1Y) with

-1

ABC
DB) =XWIX)"=| B PQ :
LR prep)

where A, P and R are symmetric matrices, given by

Voo Vo.11 V0.22 c 0 Vo.kk
vito ¢ ((viigj), 1 <14,5 <k)

Ak+1)x (k+1) = , _ _ )
vkk,o P PR ... Uk‘kk

Vog = ].IW_I]., V0.55 = 1IW—1(XJ' &1 Xj), 1< < k,
viigg = (%i ®1%:) W%, ®1%5), 1 <14, j <k,

B _ Vo.1 V0.2 ot Vok
(kt1)xk ((Visg)ixi, 1 <1, j<k) ’

v = VW% 1< <k, vij=(xi®1%)W'xj, 1<4,5<k,
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C - ('UO.IQ V0.13 o Uo.(k—l)k>
(k+1)x () ((”ii-ﬂ)kx(gy 1<4,j<I<k) ’
Vol = 1'W_1(xj ®1xp), 1<j<l<Ek,
viig, = (% @1 %)W Hx; @1 x1),1 < 4,5 <l <k,
Py = ((vig)), vij =x/ Wik, 1<4,5 <k,
Qkx(k) = ((vij0), viji =x'Wx; @1 %), 1 <i,j <l<E,
R(k)x(k) = ((vigu0))s vijur = (% @1 Xj)/W‘I(Xz ®1 X¢),
1<il<jt<k. (2.2)
Note that vo.; = vj.0, v0.jj = Vjj.0, Voji = Vjl.0s Vij = Vjis Viij = Yjiis Vigl =
Vjlis Viijj = Vjjiiy Vijlt = Vit In the inverse matrix (X'W 1X)~!, the elements

corresponding to v, in X’W1X is denoted by v™ for all m included in the
preceding expressions.

2.8. Conditions for robust second order rotatability and rsord under
autocorrelated errvor

Below are given the conditions for rotatability in second order regression
designs with correlated error model (2.1) in terms of the elements of the moment
matrix, which are given in Das (1997).

(I) (1) Vo5 = vo.51 = ()7 1 S ] <l S ka
(i) vij=0,1<4,5 <k, i#j,
(i) (1) viu; =0, L<i<k, 1<j<k,
(3) ’Uii.jl:O, 1<i<k, 1§]<l§k,
(4) Uij.lt:()a 1SZ<]Sk7 1§l<t§ka (7%])3&“’1;)7
(II) (i) voj; = constant = ag(>0), 1 <j <k,
(ii) vi; = constant = 1(>0), 1 <i<k,

(ili) v = constant = (2 +d)(>0), 1 <4<k,

(IIT) (i) vs.,;; = constant = d(>0), 1 <4, j <k, i#7,
(i) Ui5.45 = constant = %(> 0), 1<i<j<k,

(IV) vii.40 = 204545 + Vigj, 1 <i<j <k, (2.3)
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where v’s are as in (2.2).
Following (2.3), the conditions for second order rotatability under the auto-
correlated variance-covariance structure given in Section 2.1 simplify to:

@O @

N N-1
vw; =06 Tu—pY zu=0 1<j<k,
u=1 u=2
N N-1
V0.4t =0¢>Zwmwzu—pzmg‘umlu=0, 1<j<I<k,
u=1 u=2

N N-1
v =0 Zﬂfmwju + p? Z TiuTju
u=1

u=2

N-1 N-1
—P (Z TiuTj(ut+1) T Z mz‘(u+1)39ju) =0,

u=1 u=1

1<%, j<k, i#}J

(iii) (1)
N N-1
vij =0 Y Thaiu+ 00 Y ToTiu

u=1 u=2

N-1 N-1
u=1

u=1

1<i<k 1<j<k,

(2)
N N-1
V0 =0 & Z TiuTjully + p2 Z TiuTjuly

u=1 u=2

N-1 N-1
P (Z TiuZjuTi(u+1) + Z xi(uﬂ)“’j(uﬂ)xlu) =0,

u=1 u=1

1<i<j<k, 1<I<k,
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(3)
N N-1
— 2 .. 2 2 ,..
Vi1 = U < TinTjully + P Ly Ljuliy

u=1 u=2

N-1 N-1 .
—p (Z $?u$j(u+1)$1(u+1) + Z x?(u+1)$jumlu> =0,

1<i<k, 1<j<lI<k,

N N-1

2
v =0 & E TiuTijulluLty + P E ZiuZjuTluTtu
u=1 u=2

N-1
—p (Z xiumjuxl(u+1)xt(u+l)
u=1

N-1
+ Z xi(u-}-l)xj(u—i—l)xluwtu) =0,
u=1

1<i<j<k 1<I<t<k, (i,5)# (1),

Im (@
Vp.j; = constant < {02(1 A (Z Ty — P Z x_]u)

:a0(>0)’ 1S]Ska

(ii)
v;; = constant < {a (Z xh, + p? Z x5,

N-1
1 .
—2p Z miuxi(u+1)> = g(> 0), 1<i<k,

u=1

(i)

N-1

2
—2p Z mfux?(uﬂ)) = (E + d) (>0), 1 <i<k,
u=1
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@D (i)
V1.5 = constant & {o?(1 {Z T5,x2, + P Z x5,

N-1 N-1
—p (Z wwxj(u—f—l) + Z mz(u—i—l)wgu)} = d(> 0):'

u=1

1<4,j <k, i#j,

;54 = constant < {o%(1 — p?)}~ {Z a:wmw + p? Z T Ju

N-1
1
- 2p Z xiuxjuxi(u+1)$j(u+1)} = z(> 0),

u=1

1<i<j<k,
(Iv)
Viigi = 2Uija5 + Vg5 1 <1< <k, (2.4)

where vj;.45, Viij; and vi;4; are as in (II) (iii) and (IIT) (i), (if) of (2.4).
The condition for non-singularity is given by

V) 2
—+k( —E)>0, (2.5)

where vgo = {N — (N — 2)p}/(c%(1 + p)) and ao, d, 1/c are as in (2.4).

2.4. Method of construction of RSORD under the autocorrelated structure

In this subsection we discuss one method of construction of a RSORD under
the autocorrelated structure of the errors. RSORDs are those designs which re-
main second order rotatable for all the variance-covariance matrices belonging to
a well-defined class, possessing the errors in observations. These designs depend
on the definite pattern of correlation structure of errors in observations but free
of correlation parameter or parameters involved in it. The designs obtainable by
this method satisfy the moment conditions (2.4) and (2.5).
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TABELS 2.1 A RSORD with 2 factors and 17 design points

d|(l1 2 3 4 5 6
z2/0 -1 0 1 0 -1
20 -1 0 -1 0 1

9 10 11 12 13 14 15 16 17
0 —1414 0 1414 O 0 0 0 0
0 0 0 0 0 —-1414 0 1414 ©

[ el BN
p= | = 00

2.4.1. Description of the method. ~We start with a usual SORD (i.e., in case
of uncorrelated errors) having n non-central design points involving k factors.
The set of n design points can be extended to (2n + 1) points by incorporating
(n+1) central points in the following way. One central point is placed in between
each pair of non-central design points in the sequence, utilizing thus (n — 1) such
central points. Of the other two central points one is placed at the beginning and
one at the end. The number of central points of the usual SORD with which we
started may be different from the number of central points required in the design
so constructed in the autocorrelated error structure situation.

Following the above method, a RSORD under the autocorrelated structure
with 2 factors and 17 design points is given in Table 2.1. We start with a usual
SORD having 8 non-central design points and 9 central points involving 2 factors.

The design (RSORD, denoted by dp) is displayed in Table 2.1 (column being
runs).

REMARK 2.1. The RSORD under autocorrelated structure thus constructed
above is not invariant under some permutations (i.e., the order of experiments)
of the design points with respect to robust rotatability.

2.5. Measure of robust rotatability based on moment matriz

In this subsection we have given our earlier measure of second order robust
rotatability based on moment matrix following Draper and Pukelsheim (1990),
for comparing our new measure which is developed as in Section 3.

The traditional representation of a second order model is such that a row of
the design matrix (X) consists of the terms

. 2 .2 2
(121,22, ..., Tk, TY, TSy -« -, Ty T1T2, - - - 5 Th—1Tk)- (2.6)

Here we are interested in a special type of representation of design matrix (X).
The notation, which we shall use here, is the following. Let x = (x1,X2,...,Xx)’
and x; = (231, Ti2, i3, ..., Zin), 1 < 4 < k. We shall denote the terms in the
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second order model by a matrix Z(x) of order N x (1 + k + k%) which is given by
Zx)=(1:x': ¥ ®x), (2.7)

where the symbol ® denotes the Kronecker product.
Thus there are (1 + k + k2) terms in a row, say the ith row looks like

. .
(1’ T3y T2y -+« s Thi; L1y T1iT2%y « « + s T15Tkis

2 o 2 -
Z2%T 14y This - -+ » T2 This ** 5 ThiZliy Thi2, - - - Thy)y 1 <3 < N. (2.8)

An obvious disadvantage of (2.8) is that all cross product terms occur twice, so
the corresponding Z’(x)Z(x) matrix is singular. A suitable generalized inverse is
obvious, however, and this notation is very easily extended to higher orders.

Let us consider any second order robust rotatable design dg under the cor-
related regression model (2.1). The normed moment matrix of dgy is V' of order
(14 k+ k2) x (1 + k + k2) where

Z(x)'W12(x)
W1

Normed moment matrix V in (2.9) of order (1 + k + k%) x (1 + k + k2) can be
written in the form

V= V0+< o )(2k)1/2V1+( )(k)WV +< ){k( - 1)}/?

Voo

V= (2.9)

where vog = YW1, ag, d, 1/c, 1/e and (2/c + d) are as in (2.3), and each V;
is of order (1+k+k?) x (1+k+k2),0<i<5.

In the above, V4 consists of a one in (1,1) position and zeros elsewhere; V;
consists of (2k)™/2 in each of the 2k positions viz. (1,j(k + 1)+ 1) and (j(k +
1)+ 1,1); 1 < j < k and zeros elsewhere; V5 consists of (k)’l/ 2 in each of the
k diagonal positions viz. (i,7), 2 <4 < (k + 1) and zeros elsewhere; V3 consists
of {k(k —1)}~1/2 in each of the k(k — 1) positions corresponding to mixed even
fourth-order moments, i.e., (x;®1%;)'W1(x;®1%;), 1 < i # j < kin V, and
zeros elsewhere; V, consists of (k)_l/ 2 in each of the k positions corresponding
to pure fourth-order moments, i.e., (x;®1%;)W 1 (x;®1%;), 1 < i < k in V,
and zeros elsewhere, and finally Vs consists of {2k(k — 1)}1/2 in each of the
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2k(k — 1) positions corresponding to twisted mixed even fourth-order moments,
ie., (xi®1xj)’W”1(xi®1xj), 1<1i# j<kinV, and zeros elsewhere. Here ®;
denotes the Hadamard product is defined as in Section 2.1.

Note that V;’s, 0 < ¢ < 5 are symmetric and orthogonal so that V;V; = 0, and
also each V; has norm || V; ||= [tr(V;V;)]V/? = 1.

Let A4 be the moment matrix of a second order design d. We regress Ag on
Vo, Vi, Va, V3, V4 and Vs to yield the fitted equation

5
Ay = Za,-vg (2.11)
‘:0

with regression coefficients ag, a;, ag, a3, @4 and as. These coefficients are de-
termined by multiplying the equation (2.11) in turn by Vp, V4, V2, V3, V4, Vs and
taking traces

Qg = tT(AdVE)) = 1,
o; = tr(AdVi), 1 S 1 S 5.
Hence we obtain the fitted regression equation as
5
Ag=Vo+ ) Vitr(AgVi) (2.13)
i=1

and A is called the rotatable component of Ag.
Two measures based on A; and Ay are defined as follows:

(a) the measure of robust rotatability:
Qe(d) =l Aa—Vo I* / | Aa - Vo |?
= {tr(Aq — Vo)*}/{tr(Ad — V0)*} (2.14)

(Qx(d) < 1, with equality if and only if A4 is second order robust rotatable),
and

(b) the distance between A; and Ag:
6 =|| Ag— Aq ||= {tr(4 — Ag)*}/? (2.15)
with smaller 6 meaning more robust rotatable.

Then the following holds:

on(d) — L Ad= TP

- — ) 2.16
| A= Vo T (2.16)
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3. PROPOSED MEASURE FOR ROBUST SECOND ORDER ROTATABLE
DEsSIGNS

In this section we introduce a new measure to assess the degree of robust
rotatability of a second order design under the correlated model (2.1). We first
consider the following definitions and terminology used in measuring the degree
of robust rotatability.

DEFINITION 3.1. (Robust Second Order Rotatable Design). A design D on k
factors under the correlated model (2.1) which remains second order rotatable for
all the variance covariance matrices belonging to a well defined class Wy = {W
positive definite: Wyxn defined by a particular correlation structure possessing
a definite pattern} is called a Robust Second Order Rotatable Design (RSORD),
with reference to the variance-covariance class Wy.

DEFINITION 3.2. (Derived Design). A design which is obtained by any per-
mutation of design points of a robust rotatable design is called a derived design.

The permutation of design points is recommended from practical point of view
according to the desired cost and time of the experiment. The class of all derived
designs obtained by suitable permutation of design points of a robust rotatable
design dp is denoted by D(dp). Note that all derived designs are not necessarily
robust rotatable.

DEFINITION 3.3. (Weakly Robust Rotatable Design). When p (correlation
parameter involved in W ) # 0, a derived design which is not robust rotatable but is
very near to robust rotatable one (in some sense) for a certain range of correlation
parameter p € W, under a fized pattern of correlation structure W, is called a
Weakly Robust Rotatable Design (WRRD), under that correlation structure class
Wo as in Definition 3.1.

3.1. Measure of robust second order rotatability

In this subsection we introduce a measure of robust second order rotatabil-
ity. The second order response surface model with correlated error is given in
Subsection 2.1. Following (2.1), we can write

y(x) = n(x)+e
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or
Yu(x) = n(xu) + eu,
where
k k
n() = Bo+ Y Bixiw+ Y. > BiTuiu (3.1)
=1 i<j=1
which may be written in matrix notation as
n(x) = x.3, (3.2)
in which the 1 x m vector x, = (1,2%,%3,...,2%,71,%2,..., Tk, T1%2, T123, - - -,

Zgp—17k) and B is the m x 1 column vector of unknown regression coeflicients

given in Subsection 2.1 and m = (k;q).

For a known variance-covariance matrix W of errors, the best linear unbiased
estimate of 3 assuming (X'W~1X) is positive definite, is
B = X'WIxX)Y(X'WlY).
Therefore, the fitted response at X, is
I(x) = x;B.

When the fitted response §(x) = x.03 is to be used to estimate 7(x), it is well
known that

Var [§(x)] = xL(X'W1X) 1x, = V(x). (3.3)

Var[g(x)] thus depends on the particular values of the independent variables
through the vectors x}. It also depends on the design and the correlation param-
eter or parameters involved in W through the matrix (X'W~1X)~1.

In the k-dimensional space (k > 2), V(x) can be expressed in terms of spher-
ical coordinates of (7, ¢1, @2, ..., dk—2, 8), where

T = rcos ¢,

To = 7 sin ¢y €os ¢o,

Tx—1 = rsin¢g singy - - - sin ¢g_o cos b,

T = T8in @) singg - - - sin Pg_2 sin 6 (3.4)



570 RABINDRA NATH DAs AND SUNG HYUN PARK

andr >0, 0<¢i, do,...,¢p—2 <7, 0<8<2m, (Fleming, 1977, p. 218).
The absolute value of the Jacobian of this transformation is

|J| = 751 5in*2 ¢, sin* 3 ¢ - - - sin® 3 sin Pr_2.

If we substitute (3.4) into (3.3), then (3.3) will be expressed as a function of
r, 1,02, .., Pr_2, 0 and correlation parameter p or parameters (pi's;1=1,2,...,
s) involved in W, i.e.,

V(X) - UJ(T, ¢1a ¢2) . 'a¢k—27 0’ p or pi,s) =w. (35)

Let
1 27 T T

o) =g [ [ [ ol b1, nsbca 0 por pisja, (39
k 0 0 0

where dQ = sin®* 2 ¢1sin* 3 ¢ - - - sin? ¢y _z sin p_2 doy depa - - - dp_2 df and

2m 27Tk/2
T, = —
= [ ) o=
@(r) means the averaged value of V(x) over all the points on the hyper sphere of
radius 7 centered at the origin. To be robust rotatable, w(r, ¢1, ¢2,..., k-2, 0,

por p;’s) = w(r, por p;’s) = , say for all r, ¢;, 6,p or p;’s.
For a given design d, the discrepancy from rotatability at r can be expressed

/:W /OW---/O’r (wa — @) dO, (3.7)

where wq is the value of V(x) = w as in (3.5) for the design d. If the region of
interest is 0 < r < 1, the proposed measure of robust rotatability for a design d,
will be

as

1

Pe(d) = TG (3.8)

where

Gr(d) = Sik /01 =L hg(r)dr (3.9)

and Sy is a positive constant depending only on &.
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Let us take Si to be
1
T
S, = / Tk_lde’r‘ = =k
0 k

for convenience. By this way, G (d) represents the average of (w — @)? over the
region of integration.

Note that Py(d) < 1, with equality if and only if the design d is robust
rotatable, and it is smaller than one for a non-rotatable design. Also note that
Py(d) is invariant with respect to the rotation of the co-ordinate axes, since @,

hq(r) and Gi(d) are invariance with respect to the rotation of the co-ordinate
axes.

DEFINITION 3.4. (Weakly Robust Second Order Rotatable Design). Any
design d or a derived design d € D(dyp) is said to be Weakly Robust Second Order
Rotatable Design (WRSORD) of strength v if

Py(d) > v. (3.10)

Note that Py(d) involves the correlation parameter p € W and as such,
P,(d) > v for all p is too strong to be met with. On the other hand, for a
given v, we can possibly find the range of values of p for which Py(d) > v. We
will call this range as the Weak Rotatability Region (WRR), (Ry(,)(p)) of the
design d. Naturally, the desirability of using d will rest on the wide nature of
WRR, (Rg)(p)) along with its strength v. Generally, we would require v to be
very high say, around 0.95.

Now, we introduce the following fact which is useful for evaluating our mea-
sure.

(1)
ork/2
J 4=ty
(2)
/xf dQ = 2%,
(3)
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(4)
1
/xfx? x?dﬁzé/x?:ﬂ?dﬂ: 5 8 df
T;
_ 6 k . . l
Tk 7T
(5)
a2 g% 2? o? dQ—E 4 2dﬂ—1 ‘-’“4dQ——1— 522 dQ
i T 1 m = 3 x; .'I/'J Iy = 9 .’L‘,ij = 15 l'll'J
_ 1 8 _ .8 Ty
=105 ) 5T T T DR+ kT 6)
i#JFLFEmM,

where ¢, j, I, m could be 1,2,...,k and [ means f02" fo - Jo over é1,¢2,...,
®k_2,0. The values of other integrals where at least one z; has an odd exponent
are all zeros.

3.2. Illustration of the proposed measure

Herein we have considered an example of a nearly robust second order rotat-
able design with autocorrelated error. A general method of construction of robust
second order rotatable designs with autocorrelated error is given in subsection
24.

A derived design d which is obtained by permutation of design points of dg
(as given in Table 2.1), where the derived design d € D(dp) (class of all derived
designs obtained from dp), is displayed in Table 3.1 (column being runs).

Here the RSORD dj is constructed under the autocorrelated structure is given
by

Wo ={D(e) = [UQ{P“_ﬂ} 1< i, j< N] = Wnxn(p)} (3.11)
Note that,
Wyan(p) = {a (1= p)} (L + p*) I — p* Ao — pBo] (3.12)

where Iy is the N x N identity matrix, Ag is the N x N matrix with elements
a11 = ayy = 1 and all other elements 0 (zeros), and By is the N x N matrix
with b;; = 1 for | i — j | = 1 and all other elements 0 (zeros).
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TABLE 3.1 A nearly RSORD with 2 factors and 17 design points

d|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
z|(0 0 -1 0 1 0 -1 01 0 -1414 0 1414 0 0 0 0
z2|/0 0 -1 0 -1 0 1 01 0O 0 0 0 0 -—-1414 0 1.414

For the above design d, the moment matrix X’W~1X is given by

Voo 0 1414/)(1 — p) 7998(1 — p)2 V0.22 0
0 7.998(1 + p?) 0 0 0 0
1.414p(1 — p) 0 (5.999p% + 7.998) 0 —2.827p° 0
7.998(1 — p)? 0 0 11.992(1 + p?)  4(1 + p?) 0 ’
Vo.22 0 —2.827p? 4(1+p%) T7.996p7 +11.992 0
0 0 0 0 0 4(1+ p?)

where vgo = (15p% — 32p + 17) and v .09 = (5.999p2 — 13.997p + 7.998).

Now it is very difficult to find D(8)= {02(1—p?)} 1 (X'W~1X)~! explicitly in
terms of p. Without loss of generality, we will assume that ¢ = 1 for notational
convenience. 56, we have computed numerically (1 — p) "} (X'W~X)™? for

different values of p = —0.9,-0.8,...,00,0.1,...,0.9. It is seen that the inverse
has the following form:

W00 01 g 02~ 011 022 012 g
w10 = Ll pl2_ g LMl g 4122 Ll12_
200 p2l =0 22 2o 22200 2129
P10 L _ g 112 0 g LILLI 1122 12 g |
p220 221 _ (g 4222 &g 2211 V2222 2212 _
p120 — 0 pl21 (g 122 (g 1211 g 1222 _ g 1212

where v™’s are the corresponding elements of the inverse matrix as in (2.2).

A comparison between v!! and v22, and also between vl and v?2%2 is
given in Table 3.2. From Table 3.2, it is clear that v!'! ~ 22 and v!l'1 ~ 12222
and also from the variance-covariance matrix of D(,fi) as the form is given above,
it is seen that some covariance components are exactly 0 (zero) and some are
approximately 0 (zero). We delete those components from the variance function.
Therefore, from (3.5) V(§;) is given below.

V(x) = V(Qm) = VW(BO + 61331 + [325102 + 31193% + 322953 + 3129811172)

— 1]00 +U1‘1£L'% +’U2'2.’12% +,U11.11x111 _+_,U22.22mz21 +U12'12$%CE%
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TABLE 3.2 A comparison table for vt and v*?, v'1'!! and v?%?%, and values of Pi(d) and Qi (d)

for different values of p

p | 0FZ T | P22 _ITT P(d) Qr(d)
—0.9 0.002 0.003 0.9999999 .9913*
—-0.8 0.004 0.002 0.9999987 .9928
—-0.7 0.004 0.005 0.9999954 .9942
—0.6 0.005 0.009 0.9999916 .9956
—-0.5 0.004 0.010 0.9999894 .9968
-0.4 0.004 0.010 0.9999897 .9979
-0.3 0.004 0.009 0.9999927 .9988
—0.2 0.001 0.005 0.9999958 .9994
-0.1 0.0003 0.004 0.9999988 .9998

0.0 0.000 0.000 1.0000000 | 1.0000
0.1 0.0003 0.003 0.9999985 .9998
0.2 0.001 0.005 0.9999940 19991
0.3 0.002 0.006 0.9999868 9977
0.4 0.006 0.007 0.9999780 .9954
0.5 0.004 0.007 0.9999691 9921
0.6 0.005 0.006 0.9999622 .9878*
0.7 0.005 0.005 0.9999596 .9828
0.8 0.004 0.004 0.9999642 9772
0.9 0.002 0.002 0.9999795 9713

+2v0'11w% + 21)0'22:5% + 2v11‘22m%x§

— %0 +2(v1'1 +v0'11)r2 4oplllld
+{v'?'2 — d(p)}zix3 + 29(p)73, (3.13)

where d(p) = 2(v!}1! — v1122) and g(p) = v0-22 — vO11. Therefore, from (3.6),

o) = ~ [vde

Ty,

2

4
= 000 4 o(pll 4 0 10yp2 | lL1L4 | f1212 d(p)}% +2g(p)%. (3.14)

Therefore,

wa — a(r))?

_ [ (01212 -
— (- d(p)Y? (s

4

) (ﬁmg - %‘) +29(p) (xg - %2)]2

8
4,4  _
1$2+64

4
r
ol 12,2
85'3112)
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,’.4
v alo(e)? (af + 7 - ra)
+ 4 g(p) (v —d(p)}

2 4

r r o
X .’L‘2$4 - —CL‘Z.’Ez — —x2 + —= .
142 9 142 2

Therefore, from (3.7)
8

r 7'4
halr) = [ (02— d(p) o + 400 g

Hg(p) (0122 — d(p)) 4—2] T.. (3.15)

Therefore, from (3.9)

_ 2 [ {2 —d(p)}? (9(p))®  , 9lp) {v"** —d(p)}
G’“(d)_ﬁ[ 8x9 T isxs T4 A8 x 7 ]T’“
_ [P —dy | (9(0)? | glp) {212 —d(p)}
B [ 576 * 5 T 42 ] '
Therefore, from (3.8)
1

Py(d) =

(3.16)

01212 g( )12 2 vp1212_g ’
1+ [{ 576(p)} + (9(2)) + 9 { - (p)}]

where d(p) and g(p) as in (3.13).

Following (2.16), the earlier measure of robust rotatability of the above design
d is given by

(480 — 960p + 1764p% — 840p% + 390p*)
(8p% — 8p® + 30p%) + (480 — 960p + 1764p% — 84003 + 390p%)"

Qk(d) = (3.17)

The values of Py(d) and Qi(d) for different values of p are given in Ta-
ble 3.2. From Table 3.2, Weak Rotatability Region (WRR) based on Pi(d)
is Ryo9)(p) = (—0.9,0.9), and based on Q(d) are RZ(.QQ)(p) = (—0.9,0.6),
RZ(.%) (p) = (—0.9,0.9). Therefore, Py(d) gives wider range of variation of p
than Qg(d).

4. COMPARISON OF ROBUST ROTATABILITY MEASURES

In this section we are interested to compare our proposed measure of robust
rotatability Pg(d) with the measure Qx(d). The measure Py (d) is used only for
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TABLE 4.1 Comparison of two measures of robust rotatability

Criteria Qr(d) P.(d)
Applicability to asymmetric design Yes Yes
Invariance w.r.t. the design rotation Yes Yes
Information about variance contour shape No No

Range Oto1l Otol

Order of the model to which the measure applies | d>1 d=2

Weak Rotatability Region of p Smaller | Greater
second (d = 2) order model but the measure Qx(d) can be used for any model

(d > 1). However, both the measures do not provide information about variance
contour shape. For the usefulness of our proposed measure, we want to mention
the following facts which are given in Table 4.1.

5. CONCLUDING REMARKS

In this article we have developed a new measure (Py(d)) of robust second
order rotatability. One can easily compute the variance contour V(x) from the
equations (3.3) and (3.5). The measure Py(d) is illustrated with an example which
is very near robust second order rotatable design with autocorrelated errors. This
measure is also compared with the measure Q(d). This measure Py(d) gives the
wider range of p than the measure Qx(d). With the help of this measure we can
examine the robust rotatability of a second order design with respect to any
variance-covariance structure of errors.
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