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INFERENCE FOR RELIABILITY OF A BURR
DISTRIBUTIONT

M. MasooM ALI, JUNGSOO W00? AND SARALEES NADARAJAH?

ABSTRACT

The distributional properties of Pr(Y < X) and X/(X +Y') and related
estimation procedures are derived when X and Y are independent and iden-
tically distributed according to the Burr distribution. An application of the
results is provided to drought data from Nebraska.

AMS 2000 subject classifications. Primary 33C90; Secondary 62E99.
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1. INTRODUCTION

The Burr distribution is one of the most versatile distributions in statistics.
As shown by Rodriguez (1977) and Tadikamalla (1980), the Burr distribution
contains the shape characteristics of the normal, log-normal, gamma, logistic and
exponential distributions as well as a significant portion of the Pearson type I, I1,
V, VII, IX and XII families. It has received applications in life testing and many
other areas (see, Wingo, 1983, 1993; Surles and Padgett, 1998; Zimmer et al.,
1998; Moore and Papadopoulos, 2000; Surles and Padgett, 2001; Soliman, 2002;
Upadhyay et al., 2004; Ragab and Kundu, 2005).

There are many practical situations that give rise to probabilities of the form
Pr(Y < X) and ratios of the kind X/(X +Y). In stress-strength modeling,
Pr(Y < X) is a measure of component reliability when the component has a
random strength X and is subjected to random stress Y. For example, if ¥
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represents the maximum chamber pressure generated by ignition of a solid pro-
pellant and X represents the strength of the rocket chamber then Pr(Y < X)
is the probability of successful firing of the engine. In electrical and electronic
engineering, ratios of the form X/(X +Y) are used to define outage probabilities.

In this paper, we derive estimation procedures for studying Pr(Y < X) and
X/(X +Y) when X and Y are independent random variables and come from
the Burr distribution. The results are organized as follows. Section 2 notes some
basic properties of the Burr distributions. The exact form of Pr(Y < X), its
estimators, confidence interval and associated tests of hypotheses are provided
in Sections 3-6. Section 7 derives the exact distribution of X/(X +Y) and it
moments. Finally, in Section 8, drought data from Nebraska are used to describe
an application of these results.

2. BURR DISTRIBUTION

The probability density function (pdf) and the cumulative distribution func-
tions (cdf) of the Burr distribution are given by

fla) = ozt (1 +2%) 7! (2.1)
and
F(z) =1-(1+2%)7,

respectively, for x > 0, a > 0 and 8 > 0. The two parameters o and 8 both
control the shape of the distribution. Suppose X1, Xs, ..., X, is a random sample
from (2.1). If the shape parameter « is known then the maximum likelihood
estimator (MLE) of 8 (see, Woo and Ali, 1999) is given by

n -1
B=n {Zlog(l +X{")} : (2.2)

=1

The first two moments of (2.2) are

() - 22 o
and
E <B2) - %ﬂz. (2.4)
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Let

n -1
B = (n—l){Zlog(ng)} . (2.5)

i=1
Then, § is a uniform minimum variance unbiased estimator (UMVUE) of g with
the variance (Woo and Ali, 1999)

Var (8) = . (2.6)

Furthermore,

28) log(1+ X&) ~ x3,. (2.7)
=1

3. RELIABILITY R = Pr(Y < X)

Let X and Y be independent random variables having the pdf (2.1) with
parameters (o, 1) and (a, B2), respectively. Then, the form of R = Pr(Y < X)
can be expressed as

P
R = i+—p’
where p = (33/0;. Clearly, R is a monotone function of p and so inference about
it is equivalent to inference on p (McCool, 1991).

(3.1)

4. ESTIMATORS FOR p

Suppose X1, Xs,..., X, and ¥1,Y5,...,Y, are independent random samples
from (2.1) with parameters («, 1) and (o, 32), respectively. Assume that the
common shape parameter « is known. From the MLE and the UMVUE given by
(2.2) and (2.5), respectively, one can define the following estimators of p

p= & and p= @
B 5
Using equations (2.3)-(2.7), the first two moments of p and p can be obtained as
n
E(p) = 4.1
() = —"=p, (4.1)
m
E(p) =—— 4.2
(=", (4.2
. n?(m+1
E (7?) ( ) o (4.3)

- (n—1)(n-— 2)mp
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TABLE 4.1 Comparison of the MSEs of p, p and p

~ — ~

m | n I p p
10 | 10 | 0.3056 | 0.3056 | 0.2375
10 | 20 | 0.1813 | 0.2083 | 0.1611
10 | 30 | 0.1502 | 0.1843 | 0.1393
20 | 10 | 0.2361 | 0.2037 | 0.1813
20 | 20 | 0.1229 | 0.1229 | 0.1083
20 | 30 | 0.0748 | 0.0998 | 0.0875
30 | 10 | 0.2130 | 0.1751 | 0.1625
30 | 20 | 0.1034 | 0.0983 | 0.0907
30 | 30 | 0.0763 | 0.0763 | 0.0702

and

E() = gt o

Using equations (4.1)—(4.4), one can obtain the unbiased estimator of p

~ ~ —

with

Table 4.1 provides a comparison of the mean squared errors (MSE) of p, p and
p. It is evident that the estimator j has the smallest MSE. The other estimators
have the same MSE when the sample sizes m and n are equal.

5. CONFIDENCE INTERVAL FOR p

Using equation (2.7), it is easy to see that B = 1/(1 + T'), where

n

Zlog 1+Y?)
T = p'5t )

> log(1+X7)

=1

has the beta distribution with parameters m and n. Let 0 < v < 1 and define
by by
1

2 b2 m—1 n—1
5 = m o t (1 - t) dt = Ib’y/Z (m, n) (51)
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Since I, (m,n) =1— Iy, ,(n,m), a 100(1 — )% confidence interval for p can
be obtained as

b2 /2

-1
2

i=1 1 i=1
n

i

( . ilog(l+X{") ilog(l-FXia)
)

3 b n
Slog+ve) S S log (14 Y7%)
=1 i=1

where bz/z =1-b,.

6. TEST OF HYPOTHESES FOR p

Consider testing Hy : p = 1 vs. Hy : p # 1 when X, Xy,...,X,, and
Y1,Ys, ..., Y, are independent random samples from (2.1) with parameters (a, 31)
and (o, B2), respectively. Under Hy, the maximum likelihood estimators of o and
the common 3 are the simultaneous solutions of the equations

m

= XMogX; = YZlogV;
(5+1) {Z——l’fifl s +O}g,ial}

i=1 i=1

- ilogXi+ilog§’i+ m;n
i=1 =1

and

m s n N m+n
Y log (1+X5) +> log (1+¥%) = 7
i=1 =1

Under H,, the maximum likelihood estimators of «, 87 and (3 are the simulta-
neous solutions of the equations

m

5 X{flog Xi | (- Y log Y
(ﬂl+1); X +(62+1)Z TS

m n +
= zlogXi+ZlogY2+ mA n’

(%
=1 i=1

ilog(l—f—X?):g—, and ilog(l+¥'i‘i):g—.

i=1 1 i=1 2
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Thus, the likelihood ratio test (LRT) statistic for testing Ho: p=1is

—2log A1 = 2(m +n)logd — 2(m +n)logéa + 2mlog B + 2nlog fBo
—2(m + n)log B

+2(& — &) {Em:lOgXi +iIOgYi}
i=1 i=1
+2(1+48) {ilog (1+X7) +i‘°g (HY"&)}

=1 i=1
—2(L+&)§Ekg(1+3?)—2(L+&)jikg(1+Y?).
=1 i=1

Under Hj, the asymptotic distribution of —2log A is chi-squared with one de-
gree of freedom. Hence, one would reject Hp : p = 1 with significance level v
if —2logAy > x3,,.

7. DISTRIBUTION OF THE RATIO X/(X +7Y)

Let X and Y be independent random variables having the pdf (2.1) with
parameters (o, £1) and (o, B2), respectively. Let V = X/(X+Y)and W = X +Y.
The joint pdf of V and W is

fV,W(’U, ’w) = wa,@l(wv)o‘_l []_ + (wv)a]—ﬂ1—1
xafs {w(l —v)}* 1 + {w(l — v)}* ™71, (7.1)

Integrating (7.1) with respect to w by using formula (2.29) in Oberhettinger
(1974), one can obtain the marginal pdf of the ratio V= X/(X +Y) as

((af1B2B (2,61 + Bo) v* ML —v) 17

X oF1 (B1+ 1,281+ B2 +2;1 —v*(1 —v)™?),

B if 0<v<1/2,

W)=Y g8 (2,0 + ) (1~ w1 72
X oF1 (B2 +1,2; 81+ B2 + 21 — v (1 — v)?),

\ if 1/2<v<1,

where 2Fi(a,b;c;z) denotes the Gauss hypergeometric function defined by

& (a)g (B)y z*
Fi(abigr) = ) ~EtE,
2H1 Z; 0, K
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where (f)r = f(f+1)---(f + k — 1) denotes the ascending factorial. Using
formulas (1.112.1) and (1.112.2) in Gradshteyn and Ryzhik (2000) and formula
(15.3) in Oberhettinger (1974), the first two moments of V can be obtained as

()

k
x 3Fy (ﬁ1+1,2,1;51+ﬁ2+275+2;1)

k-1 -1
+(_+1)
(07

kE—1
x 3k (52+1,2,1;51+ﬁ2+277+2;1)}

E(V) = B18B (2,81 + ) D _(-1)F!
k=1

and

-1
<k+1 1)
(87

k+1
X 3Fy (/314-1 2,1; 81+ B2+ 2, ———+2 1)

k-1 -1
+( +1)
(87

k—1
X3F2 (/62+172:17/81+ﬂ2+277+271>jl;

E(V?) = B162B (2,81 + f2) Y _ k(-1
k=1

where 3F(a,b,c;d, e;z) denotes the hypergeometric function defined by

k$k

o0
3F2(abcdexzz ©, &
k

k=0
8. APPLICATION

Here, we illustrate application of the results in Sections 2-7 to drought data
from the State of Nebraska, freely downloadable from the web-site:

http://Iwf.ncdc.noaa.gov/oa/climate/onlineprod/drought /xmgrg3.html.

The data comprises of the monthly modified Palmer Drought Severity Index
(PDSI) from the period from January 1895 to December 2004. A drought is said
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TABLE 8.1 Basic drought statistics for Nebraska PDSI data

Climate | Number of | Drought frequency Mean drought Std. of drought
division | droughts (number /year) duration (months) | duration {months)

1 83 0.75 6.0 8.0

2 66 0.60 8.6 12.0

3 89 0.81 6.3 9.7

5 81 0.74 6.3 105

6 90 0.82 6.3 10.1

7 81 0.74 6.1 9.7

8 76 0.69 6.5 134

9 74 0.67 7.5 10.9

to have happened when PDSI is below 0 and is defined by the theory of runs
(Yevjevich, 1967). The State of Nebraska is divided into eight climate divisions
numbered 1, 2, 3, 5, 6, 7, 8 and 9 — there is no climate division 4 for Nebraska.
Some statistics of the observed drought for the eight climatic divisions are sum-
marized in Table 8.1. The real drought data set for the 83 drought events in
climate division 1 is illustrated in Table 8.2.

Using the PDSI data, data on drought duration (X) and non-drought duration
(Y') were obtained for each climate division. The primary questions would be:
Are the drought periods longer than the non-drought periods (or vice versa)? If
so, by what proportion? We address these questions by using the results derived
in Sections 2-7.

Firstly, we fitted the Burr distribution given by (2.1) to the observed values
of X and Y. The method of maximum likelihood was used: if X7, Xo,..., X, is
a random sample of X then we solved the equations

(B +1)ZXallogX ilo X;=_ and ilo 1+ Xx3) =72
1 i=1 1+ X ) _d i=1 ; A
to obtain the parameter estimates 3; and &;; similarly, if ¥7,Ys,...,Y, is a

random sample of Y then we solved the equations

~ Y*2logV, n & n
(B2+1)Z 1 5 ZlogY =% and Zlog (1+Y; ) =
i 1Y ' i=1 B2

to obtain the parameter estimates 3 and &z. The goodness of fit was examined by
means of probability plots. A probability plot is where the observed probability
is plotted against the probability predicted by the fitted model. Thus, we plotted
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TABLE 8.2 Drought data for Nebraska climate division 1

587

Case | Drought | Drought | Non-drought | Case | Drought | Drought | Non-drought
Duration | Intensity Duration Duration | Intensity Duration
1 5 2.66 58 43 1 0.11 7
2 11 14.34 1 44 5 3.05 3
3 1 0.91 1 45 20 53.04 1
4 2 3.59 1 46 3 4.92 11
5 8 6.82 2 47 6 6.23 4
6 1 1.24 1 48 2 1.54 9
7 1 0.40 2 49 7 9.32 10
8 2 0.18 13 50 1 0.26 4
9 18 36.54 73 51 1 0.19 2
10 1 0.69 80 52 2 2.55 2
11 5 3.40 10 53 4 0.83 1
12 5 6.71 32 54 5 5.87 11
13 1 0.44 30 55 1 0.45 1
14 4 3.29 10 56 1 0.38 1
15 11 25.45 57 57 11 13.39 19
16 11 26.24 1 58 6 9.21 2
17 2 3.67 2 59 3 1.23 1
18 4 3.49 2 60 10 18.84 1
19 13 51.50 1 61 2 0.23 2
20 31 93.51 6 62 5 3.15 1
21 1 0.06 1 63 2 1.36 1
22 1 0.61 3 64 1 0.55 1
23 1 0.10 1 65 3 2.04 2
24 27 79.85 3 66 1 0.64 5
25 4 4.80 26 67 24 47.60 12
26 1 1.16 27 68 8 19.22 33
27 2 2.76 2 69 1 0.20 4
28 2 0.51 6 70 32 63.07 30
29 6 4.75 33 71 8 10.68 1
30 6 5.52 4 72 4 6.46 1
31 2 1.19 15 73 2 0.04 1
32 2 0.38 1 74 1 0.72 6
33 1 0.26 1 75 5 12.96 11
34 2 0.49 1 76 2 1.34 43
35 6 4.80 2 77 1 0.22 2
36 37 77.38 1 78 1 0.25 5
37 2 1.52 26 79 3 2.64 15
38 2 1.01 3 80 1 0.62 5
39 14 23.01 1 81 2 2.02 1
40 1 0.77 1 82 3 2.13 1
41 1 0.64 1 83 34 116.12 1
42 5 3.53 3
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FI1GURE 8.1 Probability plots of the fit of (2.1) for drought duration data from the eight climate
divisions.

Fx(x() vs. (i — 0.375)/(m + 0.25) and Fy(yg;)) vs. (i — 0.375)/(n + 0.25), as
recommended by Blom (1958) and Chambers et al. (1983), where

Fx(z)=1- (1+2™)™ and Fy(y) =1- (1+4%) >

and z(;) and y(;) are the sorted values, in the ascending order, of the observed
drought duration and the observed non-drought duration, respectively. The plots
are shown in Figure 8.1 and 8.2. Both figures suggest that the fit of the Burr
distribution is reasonable especially in the upper tails.



INFERENCE FOR RELIABILITY OF A BURR DISTRIBUTION

%
- o
g 31 g 8°
g ~
WU o 1
5] T BN T T T T
0.0 0.2 04 0.6 0.8 1.0
Observed

3
- ©
8 o]
2 .
X -
W o
2
Observed
32 =
- w0
g o 1
2 -
% 4
o
o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Observed
3 A
L o©
3 ]
g °] 0
3 4
Uoo ]
o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Observed

FIGURE 8.2 Probability plots of the fit of (2.1) for
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non-drought duration data from the eight

Next, we examined to see whether the Burr distribution model with two
parameters for each X and Y (four parameters in total) can be reduced to a
simpler model. We fitted the following variations:

Model 1: a; = ag = a (3 parameter model),

Model 2: a; = ag = a and B, = B2 = 3 (2 parameter model).

Both models were fitted by the method of maximum likelihood. We used the
LRT to see whether models 1 or 2 provided a simplification. The LRT statistic
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TABLE 8.3 Likelihood ratio test statistics

Climate Division | —2log Az | —2log A;
1 3.5 4.1
2 0.5 1.5
3 0.1 2.0
4 1.3 54
5 0.4 2.8
6 04 6.6
7 0.0 8.7
8 0.5 2.3

for testing oy = o is

—2log Ay = 2mlogdy + 2nlog ay — 2(m + n)log & + 2mlog B
—2mlog B +2n log 32 — 2nlog Ba

m n
+2(@—6) > logX;+2(az— &)Y log¥;
=1 i=1

+2 (1 +[3’1) ilog (1 +Xf‘) +2 (1 +Bz) zn:log (1 +Y{3‘)
i=1 i=1

m n
—2(1+B1) Y log (1+X7) —2(1+52) D _log (1+Y2),

i=1 i=1
where &, Bl and ,32 are as defined in Section 6. The LRT statistic for testing
Model 2 vs. Model 1 is —2log A; described in Section 6. The values of —2log Ay
and —2log Ay for the eight climate divisions are shown in Table 8.3. It follows
by the LRT that Model 1 provides as good a fit as the full four parameter model
for all of the eight climate divisions. However, Model 1 cannot be simplified
further since the values of —2log A; are significant. Hence, one can say that
drought duration and non-drought duration are Burr distributed with the same
a but different 8’s. The parameter estimates &, Bl and ,5'2 of Model 1 and
their standard errors (obtained by inverting the observed information matrix)
are shown in Table 8.4.

The probability R = Pr(Y < X) will tell us whether the drought periods are
longer than the non-drought periods or not. By equation (3.1), computing R
amounts to computing p. Table 8.5 provides various estimates of p — both point
and interval estimates — obtained using the results in Sections 4 and 5. It seems
that, on average, the 95% confidence interval for p ranges from 0.5 to 1. Thus,
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TABLE 8.4 Parameter estimates and standard errors for Model 1

Climate Division

& (s.e.)

,81 (s.e.)

,@2 (s.e.)

W =3 S S W v

0.840 (0.043)
0.860 (0.050)
0.877 (0.043)
0.897 (0.046)
0.923 (0.046)
0.885 (0.046)
0.933 (0.050)
0.906 (0.051)

12.664 (1.882)
10.216 (1.594)
13.317 (1.889)
14.066 (2.128)
14.795 (2.155)
14.090 (2.124)
15.111 (2.364)
12.125 (1.882)

9.196 (1.204)
8.280 (1.207)
10.770 (1.430)
9.743 (1.316)
11.505 (1.557)
9.375 (1.264)
9.309 (1.309)
9.440 (1.353)

TABLE 8.5 Estimates of p and its confidence interval

Climate Division b I p 95% CI
1 0.726 | 0.726 | 0.717 | (0.536, 0.984)
2 0.810 | 0.810 | 0.798 | (0.577, 1.139)
3 0.809 | 0.809 | 0.800 | (0.589, 1.085)
4 0.693 | 0.693 | 0.684 | (0.509, 0.942)
5 0.778 | 0.778 | 0.769 | (0.568, 1.042)
6 0.665 | 0.665 | 0.657 | (0.489, 0.905)
7 0.616 | 0.616 | 0.608 | (0.437, 0.847)
8 0.779 | 0.779 | 0.768 | (0.549, 1.075)

the 95% confidence interval for R ranges from 0.33 to 0.50.

The ratio V = X/(X+Y) will give us some measure of the relative proportion
of droughts. Using the results in Section 7, we plotted the fitted density of V
for all of the eight climate divisions, see Figure 8.3. The densities are skewed to
the left, meaning that there is a higher probability that non-drought periods are
longer than drought periods. The similarities of the densities suggest that there
is little difference between the climate divisions. This is what one would expect
given the geography of the State of Nebraska.

ACKNOWLEDGEMENTS

591

The authors would like to thank the editor and the referee for carefully reading

the paper and for their comments which greatly improved the paper.

New York.

REFERENCES
BrowM, G. (1958). Statistical Estimates and Transformed Beta-Variables, John Wiley & Sons,



592 M. MAsooM ALl et al.

0 ]
N
o |
N

> 0|

— -~

[=]

w

[a}

a

O

2

2 o

ic = 4
o 4
=]
<
o

0.0 0.2 0.4 0.6 0.8 1.0

\'

FIGURE 8.3 Fitted densities of (7.2) for the eight climate divisions. Parameter estimates from
Model 1 are used.

CHAMBERS, J. M., CLEVELAND, W. S., KLEINER, B. AND TUKEY, P. A. (1983). Graphical
Methods for Data Analysis, Duxbury Press, Boston.

GRADSHTEYN, I. S. AND Ryzuix, I. M. (2000). Table of Integrals, Series and Products,
Academic Press, San Diego.

McCooL, J. L. (1991). “Inference on P{Y < X} in the Weibull case”, Communications in
Statistics-Simulation and Computation, 20, 129-148.

MOORE, D. AND PAPADOPOULOS, A. S. (2000). “The Burr type XII distribution as a failure
model under various loss functions”, Microelectronics Reliability, 40, 2117-2122.

OBERHETTINGER, F. (1974). Tables of Mellin Transforms. Springer-Verlag, New York.

RaqQaB, M. Z. anp Kunpu, D. (2005). “Comparison of different estimators of P[Y < X]
for a scaled Burr Type X distribution”, Communications in Statistics-Simulation and
Computation, 34, 465—483.

RODRIGUEZ, R. N. (1977). “A guide to the Burr type XII distributions”, Biometrika, 64,
129-134.

SOLIMAN, A. A. (2002). “Reliability estimation in a generalized life-model with application
to the Burr—XI1”, IEEF Translations on Reliability, 51, 337—343.

SURLES, J. G. AND PADGETT, W. J. (1998). “Inference for P(Y < X) in the Burr Type X
model”, Journal of Applied Statistical Science, 5, 225-238.

SURLES, J. G. AND PADGETT, W. J. (2001). “Inference for reliability and stress-strength for
a scaled Burr Type X distribution”, Lifetime Data Analysis, 7, 187-200.



INFERENCE FOR RELIABILITY OF A BURR DISTRIBUTION 593

TADIKAMALLA, P. R. (1980). “A look at the Burr and related distributions”, International
Statistical Review, 48, 337-344.

UPADHYAY, S. K., JAVED, I. A. AND PESHWANI, M. (2004). “Bayesian analysis of generalized
four-parameter Burr distribution via Gibbs sampler”, Metron, 62, 115-135.

WiNGo, D. R. (1983). “Maximum likelihood methods for fitting the Burr type XII distribution
to life test data”, Biometrical Journal, 25, 77-84.

WINGO, D. R. (1993). “Maximum likelihood methods for fitting the Burr type XII distribution
to multiply (progressively) censored life test data”, Metrika, 40, 203-210.

Wo0, J. AND ALL, M. M. (1999). “Right tail probability estimation in a Burr distribution”,
Journal of Statistical Research, 38, 51-55.

YEVIEVICH, V. (1967). “An objective approach to definitions and investigations of continental
hydrologic droughts”, Hydrologic Paper No. 23, Colorado State University, Fort Collins.

ZIMMER, W. J., KEATS, J. B. AND WaANG, F. K. (1998). “The burr XII distribution in
reliability analysis”, Journal of Quality Technology, 30, 386-394.



