Measurement of Thermal Shrinkage/Expansion Force of Filled Rubber

충전된 고무재료의 열변화에 따른 수축력/팽창력 측정

  • Park, Sang-Min (Center for Functional Nano Fine Chemicals (BK 21) School of Applied Chemical Engineering, Chonnam National University) ;
  • Hong, Chang-Kook (Center for Functional Nano Fine Chemicals (BK 21) School of Applied Chemical Engineering, Chonnam National University) ;
  • Cho, Dong-Lyun (Center for Functional Nano Fine Chemicals (BK 21) School of Applied Chemical Engineering, Chonnam National University) ;
  • Kaang, Shin-Young (Center for Functional Nano Fine Chemicals (BK 21) School of Applied Chemical Engineering, Chonnam National University)
  • 박상민 (전남대학교 응용화학공학부) ;
  • 홍창국 (전남대학교 응용화학공학부) ;
  • 조동련 (전남대학교 응용화학공학부) ;
  • 강신영 (전남대학교 응용화학공학부)
  • Published : 2007.12.31

Abstract

In this study, the thermal shrinkage and expansion stresses of filled NR and SBR vulcanizates were measured to investigate the dimensional stability at an elevated temperature. When a rubber sample was held at constant pre-strain, a thermal stress developed upon heating due to the entropic consideration. The peak shrinkage stress of carbon black or silica filled NR decreased with increasing filler content. In SBR compounds, however, the peak shrinkage stress of SBR with 30 phr filler content was higher than that of unfilled compounds. The expansion stress of carbon black filled NR was changed little, but that of filled SBR increased with increasing the filler content. The peak expansion stress of silica filled NR and SBR vulcanizates increased with increasing silica content.

본 연구에서는 충전된 고무재료의 온도 변화에 대한 치수 안정성을 고찰하기 위해 카본블랙 또는 실리카가 충전된 NR과 SBR의 열변화시 발생하는 수축력과 팽창력을 측정하였다. 일정 길이로 인장된 시편의 온도를 올렸을 때 고무사슬의 엔트로피적 변화에 의해 수축력이 발생하였다. 카본블랙이나 실리카가 첨가된 NR의 경우 충전제 함량이 증가함에 따라 최대 열수축력 값이 감소하였으나, SBR의 경우는 30 phr 함량에서 미충전 고무보다 높은 열수축력 값을 보였다. 압축된 시편의 열팽창력 측정의 경우, 카본블랙을 첨가한 NR의 열팽창력은 거의 변화가 없었으나, SBR은 카본블랙 양의 증가와 함께 최대 팽창력 값이 증가하였다. 실리카를 첨가했을 경우 NR, SBR시편 모두 첨가량이 증가할수록 최대 열팽창력 값이 증가하였다.

Keywords

References

  1. J. A. Shaw, A. S. Jones, and A. S. Wiliam, 'Chemorheological Response of Elastomers at Elevated Temperature: Experiment and Simulations', J. Mech. Phys. Solids, 53, 2758 (2005) https://doi.org/10.1016/j.jmps.2005.07.004
  2. K. Urayama, 'An Experimentalist''s View of the Physics of Rubber Elasticity', J. Polym. Sci.: Part B: Polym. Physics, 44, 3440 (2006) https://doi.org/10.1002/polb.21010
  3. D. J. Hitt and M. Gilbert, 'Dimensional Stability of Oriented, Rigid Poly(vinyl chloride)', J. Appl. Polym. Sci., 89, 3859 (2003) https://doi.org/10.1002/app.12576
  4. S. D. Long and I. M. Ward, 'Shrinkage Force Studies of Oriented Polyethylene Terephthalate', J. Appl. Polym. Sci., 42, 1921 (1991) https://doi.org/10.1002/app.1991.070420715
  5. N. Rattanasom, T. Saowapark, and C. Deeprasertkul, 'Reinforcement of Natural Rubber with Silica/Carbon Black Hybrid Filler', Polym. Test., 26, 369 (2007) https://doi.org/10.1016/j.polymertesting.2006.12.003
  6. S.-S. Choi, C. Nah, S. G. Lee, and C. W. Joo, 'Effect of Filler-Filler Interaction on Rheological Behavior of Natural Rubber Compounds Filled with Both Carbon Black and Silica', Polym. Int., 52, 23 (2003) https://doi.org/10.1002/pi.975
  7. C. K. Hong, H. Kim, C. Ryu, C. Nah, Y. Huh, and S. Kaang, 'Effects of Particle Size and Structure of Carbon Black on the Abrasion of Filled Elastomer Compounds', J. Materials Sci., (accepted)
  8. S.-S. Choi, 'Influence of Polymer-Filler Interactions on Retraction Behaviors of Natural Rubber Vulcanizates Reinforced with Silica and Carbon Black', J. Appl. Polym. Sci., 99, 691 (2006) https://doi.org/10.1002/app.22562
  9. A. Kasner and E. Meinecke, 'Porosity in Rubber, a Review', Rubber Chem. Technol., 69, 424 (1996) https://doi.org/10.5254/1.3538379
  10. G. A. J. Orchard, G. R. Davies, and I. M. Ward, 'The Thermal Expansion Behavior of Highly Oriented Polyethylene', Polymer, 25, 1203 (1984) https://doi.org/10.1016/0032-3861(84)90364-1
  11. A. V. Tobolsky, 'Properties and Structure of Polymers', Wiley, NY, 1960
  12. G. R. Hamed and S. Hatfield, 'On the Role of Bound Rubber in Carbon Black Reinforcement', Rubber Chem. Technol., 62, 143 (1989) https://doi.org/10.5254/1.3536231
  13. I. Franta, 'Elastomers and Rubber Compounding Materials', Elsevier, NY, 1989
  14. L. Bokobza and N. Nugay, 'Orientation Effect of Mica in Fumed Silica Reinforced Composites', J. Appl. Polym. Sci., 81, 215 (2001) https://doi.org/10.1002/app.1431
  15. A. S. Khan and O. Lopez-Pamies, 'Time and Temperature Dependent Response and Relaxation of a Soft Polymer', International J. Plasticity, 18, 1359 (2002) https://doi.org/10.1016/S0749-6419(02)00003-7
  16. H. M. James and E. Guth, 'Simple Presentation of Network Theory of Rubber, with a Discussion of Other Theories', J. Polym. Sci. Part B: Polym. Phys., 34, 7 (1996) https://doi.org/10.1002/polb.1996.883
  17. C. K. Hong, S. Park, and S. Kaang, 'A Test Method for Measuring the Dimensional Stability of Elastomeric Materials upon Heating', Polym. Test., accepted (2007)