Morphology and Mechanical Properties of Polyurethane/Organoclay Nanocomposites

폴리우레탄/유기화 점토 나노복합체의 모폴로지와 기계적 물성

  • Park, Kyu-Nam (Department of Polymer Science & Engineering, Kumoh National Institute of Technology) ;
  • Yoon, Kwan-Han (Department of Polymer Science & Engineering, Kumoh National Institute of Technology) ;
  • Bang, Dae-Suk (Department of Polymer Science & Engineering, Kumoh National Institute of Technology)
  • 박규남 (금오공과대학교 고분자공학과) ;
  • 윤관한 (금오공과대학교 고분자공학과) ;
  • 방대석 (금오공과대학교 고분자공학과)
  • Published : 2007.12.31

Abstract

Polyurethane (PU) was prepared with the compositions of polytetramethylene glycol (PTMG) having two different molecular weight (250, 1000 g/mol). The optimum composition of PTMG 250/1000 was 60/40 based on the mechanical properties. PU/organoclay nanocomposites were prepared with several kinds of organoclay. The mechanical properties of nanocomposite prepared with 93A were considerable. The improvement in tensile strength and modulus for PU/organoclay nanocomposite with the application of ultrasound compared to the PU/organoclay nanocomposite without the application of ultrasound was factors of 1.2, and hardness (shore A type) increased from 90 to 95. The difference in thermal degradation was not observed. The results of transmission electron micrographs and X-ray measurements suggest that the intercalated organoclay in PU matrix was observed.

분자량이 다른 polytetramethylene glycol (PTMG, 분자량: 250, 1000 g/mol)의 조성에 따라 polyurethane(PU)를 제조하였고 PTMG 250/1000의 비율이 60/40인 조성의 기계적 성질이 가장 우수하였다. 최적 조성의 PU에 다양한 종류의 organoclay를 첨가하여 PU/organoclay 나노복합체를 제조하였다. PU/organoclay 나노복합체의 인장강도와 신장율을 고려할 때 organoclay 93A가 가장 우수하였다. 초음파를 사용하여 organoclay를 분산시킨 나노복합체의 경우 초음파를 사용하지 않은 경우보다 인장강도 및 탄성율은 1.2배 증가하였고 경도는 90에서 95로 증가하였으며 신장율은 600% 이상 얻어졌다. 나노복합체의 열 안정성은 PU와 큰 차이를 보이지 않았다. X선 회절 (XRD, X-ray diffraction)을 통하여 나노복합체내에 있는 organoclay의 층간 판상거리가 2.5 nm에서 3.3 nm로 증가함을 관찰하였다. 이는 organoclay가 PU 내에서 완전 박리가 안되고 삽입된 것을 의미하며 TEM (transmission electron micrograph)에 의해 확인되었다.

Keywords

References

  1. 권봉수, '대구경 Si Wafer 개발 연구', (주)실트론 (1992)
  2. 윤경훈, '일본, 미국, 유럽 태양광 연구개발, 태양전지 생산, 시장활성화 정책', 태양전지연구센터 (2003)
  3. L. Zhu and I. Kao, 'Galerkin-based model analysis on the vibration of wire-slurry system in wafer slicing using a wiresaw', J. Sound. Vibra., 283, 589 (2005) https://doi.org/10.1016/j.jsv.2004.04.018
  4. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, 'Swelling behavior of montmorillonite cation exchanged for \omega$-amino acids by \varepsilon$-caprolactam' J. Mater. Res., 8, 1174 (1993) https://doi.org/10.1557/JMR.1993.1174
  5. A. Usuki, M. Kawasumi, Y. Kojima, A. Okada, Y. Fukushima, T. Kurauchi, et al., 'Synthesis of nylon 6-clay hybrid' J. Mater. Res., 8, 1179 (1993) https://doi.org/10.1557/JMR.1993.1179
  6. M. O. Abdalla, D. Dean, and S. Campbell, 'Viscoelastic and mechanical properties of thermoset PMR-type polyimide-clay nanocomposites' Polymer, 43, 5887 (2002) https://doi.org/10.1016/S0032-3861(02)00498-6
  7. F. Gardebien, A. Gaudel-Siri, J‐L. Bredas, and R. Lazzaroni, 'Molecular dynamics simulations of intercalated poly(\varepsilon$-caprolactone)-montmorillonite clay nanocompoisites' J. Phys. Chem. B, 108, 10678 (2004) https://doi.org/10.1021/jp0493069
  8. A. Somwangthanaroj, E. C. Lee, and M. J. Solomon, 'Early stage quiescent and flow-induced crystallization of intercalated polypropylene nanocomposites by time-resolved light scattering' Macromolecules, 36, 2333 (2003) https://doi.org/10.1021/ma021454e
  9. W. J. Bao, K. H. Kim, W. H. Jo, and Y. H. Park, 'Exfoliated nanocomposites from polyaniline graft copolymer/clay' Macromolecules, 36, 9851 (2004) https://doi.org/10.1021/ma035077x
  10. M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, 'Polyurethane adhesive nanocomposites as gas permeation barrier' Macromolecules, 36, 9851 (2003) https://doi.org/10.1021/ma035077x
  11. J. Xiong, Z. Zheng, H. Jiang, S. Ye, and X. Wang, 'Reinforcement of polyurethane composites with an organically modified montmorillonite' Composites Part A, 38, 132 (2007) https://doi.org/10.1016/j.compositesa.2006.01.014
  12. A. Rehab, A. Akelah, T. Agag, and N. Shalaby, 'Polyurethane-nanocomposite materials via in situ polymerization into organoclay interlayers', Polym. Adv. Technol., 18, 463 (2007) https://doi.org/10.1002/pat.887
  13. W. J. Seo, Y. T. Sung, S. B. Kim, Y. B. Lee, K. H. Choe, S. H. Choe, J. Y. Sung, and W. N. Kim, 'Effects of ultrasound on the synthesis and properties of polyurethane foam/clay nanocomposites', J. Appl. Polym. Sci., 102, 3764 (2006) https://doi.org/10.1002/app.24735