DOI QR코드

DOI QR Code

Preparation and Electrical Conductivity of Scandia Stabilized Zirconia by using Ultrasonic Spray Pyrolysis

초음파 분무 열분해법을 이용한 스칸디아 안정화 지르니코니아의 제조와 전기 전도도

  • Choi, Young-Hoon (Korea Institute of Energy Research (KIER)) ;
  • Peck, Dong-Hyun (Korea Institute of Energy Research (KIER)) ;
  • Park, Young-Chul (Korea Institute of Energy Research (KIER)) ;
  • Lim, Kyoung-Tae (Division of New Materials Engineering, Chungnam National University) ;
  • Suhr, Dong-Soo (Division of New Materials Engineering, Chungnam National University) ;
  • Wackerl, J. (Institute of Energy Research(IEF-2), Research Centre Julich(FZJ)) ;
  • Markus, T. (Institute of Energy Research(IEF-2), Research Centre Julich(FZJ))
  • 최영훈 (한국에너지기술연구원 수소.연료전지연구부) ;
  • 백동현 (한국에너지기술연구원 수소.연료전지연구부) ;
  • 박영철 (한국에너지기술연구원 수소.연료전지연구부) ;
  • 임경태 (충남대학교 나노공학부) ;
  • 서동수 (충남대학교 나노공학부) ;
  • ;
  • Published : 2007.12.31

Abstract

Scandia stabilized zirconia (ScSZ) is adapted for electrolyte material of solid oxide fuel cell (SOFC) because of its high ionic conductivity and chemical stability. ScMnSZ1 powder having a composition of $((ZrO_2)_{0.89}(Sc_2O_3)_{0.1}(MnO_2)_{0.01})$ is synthesized by ultrasonic spray pyrolysis (USP) method. Porous ScMnSZ1 powder is obtained by using a pore forming agent. Microstructure and morphology, particle size distribution of porous powder synthesized with 3wt% pore forming agent are investigated. Sintered ScMnSZ1 sample with ground fine powder are also investigated their microstructure and electrical conductivity. The electrical conductivity of sintered ScMnSZ1 samples with ground fine powder was 0.082 S/cm, 0.127 S/cm and 0.249 S/cm at $750^{\circ}C$, $800^{\circ}C$ and $900^{\circ}C$, respectively.

Keywords

References

  1. N. Q. Minh, 'Ceramic Fuel Cells,' J. Am. Ceram. Soc., 76 [3] 563-88 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. C. Haering, A. Roosen, H. Schichl, and M. Schnller, 'Degradation of the Electrical Conductivity in Stabilised Zirconia System, Part II: Scandia-stabilised Zirconia,' Solid state Ionics, 176 261-68 (2005) https://doi.org/10.1016/j.ssi.2004.07.039
  3. S. C. Singhal and K. Kendall, 'High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications,' pp. 89-91, Elsevier Advanced Technology, UK, 2003
  4. O. Yamamoto, 'Solid Oxide Fuel Cells: Fundamental Aspects and Prospects,' Electrochimica Acta, 45 2423-35 (2000) https://doi.org/10.1016/S0013-4686(00)00330-3
  5. D. S. Lee, J. W. Heo, J. D. Kim, J. S. Kim, H. W. Lee, G. H. Kim, D. J. Kim, and J. H. Lee, 'Electrical Conductivity of $ZrO_2$ Doped with $Sc_2O_3$ and $CeO_2$ (in Korean),' J. Kor. Ceram. Soc, 39 [4] 346-51 (2002) https://doi.org/10.4191/KCERS.2002.39.4.346
  6. M. Hirano, T. Oda, K. Ukai, and Y. Mizutani, 'Effect of $Bi_2O_3$ Additives in Sc Stabilized Zirconia Electrolyte on a Stability of Crystal Phase and Electrolyte Properties,' Solid State Ionics, 158 215-23 (2003) https://doi.org/10.1016/S0167-2738(02)00912-8
  7. S. P. S. Badwal, F. T. Ciacchi, and D. Milosevic, 'Scandia Stabilized Zirconia Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell Operation,' Solid state Ionics, 136-137 91-9 (2000) https://doi.org/10.1016/S0167-2738(00)00356-8
  8. S. Sarat, N. Sammes, and A. Smirnova, 'Bismuth Oxide Doped Scandia-stabilized Zirconia Electrolyte for the Intermediate Temperature Solid Oxide Fuel Cells,' J. Power Sources, 160 892-96 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.007
  9. J. H. Lee, K. Y. Jung, and S. B. Park, 'Modification of Titania Particles by Ultrasonic Spray Pyrolysis of Colloid,' J. Mater. Sci., 34 4089-4093 (1999) https://doi.org/10.1023/A:1004684520087
  10. W. Kucza, J. Oblakowski, R. Gajerski, S. Labus, M. Danielewski, A. Malecki, J. Morgiel, and A. Michalski, 'Synthesis and Characterization of Alumina-and Zirconiabased Powders Obtained by the Ultrasonic Spray Pyrolysis,' J. Thermal Analysis and Calorimetry, 88 [1] 65-9 (2007) https://doi.org/10.1007/s10973-006-8075-3
  11. J. H. Lee, H. J. Cho, and S. J. Park, 'Preparation of Spherical $TiO_2$ Powders by Spray Pyrolysis Using Ultrasonic Atomization Technique,' J. Kor. Ceram. Soc., 28 [10] 831-37 (1991)
  12. D. H. Peck, G. W. Park, R. H. Song, J. H. Kim, D. R. Shin, D. H. Jung, and K. Hilpert, 'Preparation and Characterization of Scandia Stabilized-Zirconia by Ultrasonic Spray Pyrolysis Methode for Membranes in Solid Oxide Fuel Cell,' pp. 1194-201 in 6th European Solid Oxide Fuel Cell Forum, Ed. by M. Mogensen, European Fuel Cell Forum, Switzerland, 2004
  13. D. H. Peck, R. H. Song, J. H. Kim, T. H. Lim, D. R. Shin, D. H. Jung, and K. Hilpert, 'Electrical Conductivity of Scandia Stabilized Zirconia for Membranes in Solid Oxide Fuel Cell,' pp. 947-53 in Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Ed. by S.C. Singhal and J. Mizusaki, The Electrochem. Soc. Inc., NJ, 2005
  14. S. P. Jiang, J. P. Zhang, and Karl Foeger, J. Eur. Ceram. Soc., 23 1865-73 (2003) https://doi.org/10.1016/S0955-2219(02)00447-8
  15. A. Matraszek, M. Miller, L. Singheiser, and K. Hilpert, J. Eur. Ceram. Soc., 24 2649-56 (2004) https://doi.org/10.1016/j.jeurceramsoc.2003.09.015
  16. U. Schubert and N. Hsing, 'Synthesis of Inorganic Materials,' pp. 112-25, Wiley-VCH, Weinheim, 2nd revised and updated edition, 2005