Preparation and Characterization of Proton Conducting Crosslinked Membranes Using Polymer Blends

폴리머 블렌딩을 이용한 수소 전도성 가교형 막의 제조와 그 특성

  • Kim, Jong-Hak (Department of Chemical Engineering, Yonsei University) ;
  • Lee, Do-Kyoung (Department of Chemical Engineering, Yonsei University) ;
  • Choi, Jin-Kyu (Department of Chemical Engineering, Yonsei University) ;
  • Seo, Jin-Ah (Department of Chemical Engineering, Yonsei University) ;
  • Roh, Dong-Kyu (Department of Chemical Engineering, Yonsei University)
  • Published : 2007.12.30

Abstract

Proton conducting crosslinked membranes have been prepared by polymer blending, which consist of poly(vinyl alcohol-co-ethylene) (PVA-co-PE) and poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA) at 50 : 50 wt ratio. Two kinds of PSSA-co-PMA copolymer with 3 : 1 and 1 : 1 the molar ratio of PSSA to PMA wereused as a proton conducting source. The ethylene content of PVA-co-PE was also changed as 0, 27 and 44 mol%. The membranes were thermally crosslinked via the esterification reaction between -OH of PVA and -COOH of PMA, as demonstrated by FT-IR spectroscopy (PVA-co-PE)/(PSSA-co-PMA) membranes with 3 : 1 the molar ratio of PSSA to PMA showed higher ion exchange capacity (IEC), lower water uptake and higher proton conductivity than those with 1 : 1 molar ratio. As the PE concentration increased, the IEC values, water uptake and proton conductivities decreased continuously. These properties were elucidated in terms of competitive effect between the concentration of sulfonic acid, hydrophilicity and the crosslinked structure of membranes.

Poly(vinyl alcohol-co-ethylene) (PVA-co-PE)와 poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA)을 고분자 블렌딩 방법으로 50 : 50의 무게비율로써 수소이온 전도성 가교형 전해질막을 제조하였다. PSSA와 PMA이 3 : 1과 1 : 1의 몰 구성비로 되이 있는 두 가지 종류의 PSSA-co-PMA 고분자를 수소이온 전도성 고분자로 사용하였으며, PVA-co-PE 고분자는 에틸렌의 함량이 0, 27 그리고 44 mol%인 고분자를 사용하였다. 전해질 막은 PVA의 히드록실 그룹과 PMA의 카르복시릭 그룹 사이의 에스테르화 반응을 통한 열가교를 통해 제조하였고, FT-IR을 통하여 이를 확인하였다. PSSA-co-PMA의 몰비율이 3 : 1로 구성되어 제조된 전해질막은 몰비율 1 : 1로 구성되어 제조된 막보다 더 낮은 이온교환용량과 더 높은 함수율, 수소이온 전도도를 나타내었다. 또한, 전해질막에서 PE의 함량이 증가할수록 이온교환용량, 함수율, 수소이온 전도도가 계속해서 감소하는 경향성을 보였다. 전해질막의 이러한 물성들은 술폰산기의 함량과 친수성, 막의 가교구조 사이의 경쟁적인 효과로써 설명하였다.

Keywords

References

  1. E. Y. Choi, B. Bae, and S. H. Moon, 'Control of the fixed charge distribution in an ion-exchange membrane via diffusion and the reaction rate of the monomer', J. Phys. Chem. B, 111, 6383 (2007) https://doi.org/10.1021/jp071153c
  2. J. A. Kerres, 'Development of ionomer membrane for fuel cells', J. Membr. Sci., 185, 3 (2001) https://doi.org/10.1016/S0376-7388(00)00631-1
  3. L. Depre, M. Ingram, C. Poinsignon, and M. Popall, 'Proton conducting sulfon/sulfonamide functionalized materials based on inorganic-organic matrices', Electrochim. Acta, 45, 1377 (2000) https://doi.org/10.1016/S0013-4686(99)00346-1
  4. M. S. Kang, Y. J. Choi, and S. H. Moon, 'aterswollen cation-exchange membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)' J. Membr. Sci., 207, 157 (2002) https://doi.org/10.1016/S0376-7388(02)00172-2
  5. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, 'Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)', J. Membr. Sci., 233, 93 (2004) https://doi.org/10.1016/j.memsci.2004.01.004
  6. S.-L. Chen, J. B. Benziger, A. B. Bocarsly, and T. Zhang, 'Photo-cross-linking of sulfonated styreneethylene-butylene copolymer membranes for fuel cells', Ind. Eng. Chem. Res., 44, 7701 (2005) https://doi.org/10.1021/ie050015b
  7. Z. Li, J. Ding, G. P. Robertson, and M. D. Guiver, 'A Novel Bisphenol Monomer with Grafting Capability and the Resulting Poly(arylene ether sulfone)s', Macromolecules, 39, 6990 (2006) https://doi.org/10.1021/ma061054h
  8. J. R. Varcoe, R. C. T. Slade, E. L. H. Yee, S. D. Poynton, D. J. Driscoll, and D. C. Apperley, 'Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metalcation-free alkaline polymer electrolyte fuel cells', Chem. Mater., 19, 2686 (2007) https://doi.org/10.1021/cm062407u
  9. Md. K. Rahman, G. Aiba, Md. A. B. H. Susan, Y. Sasaya, K.-i. Ota, amd M. Watanabe, 'Synthesis, characterization, and copolymerization of a series of novel acid monomers based on sulfonimides for proton conducting membranes', Macromolecules, 37, 5572 (2004) https://doi.org/10.1021/ma0498058
  10. J. H. Choi, C. K. Yeom, J. M. Lee, and D. S. Suh, 'Nanofiltration of electrolytes with charged composite membranes', Membr. J., 13, 1, 29 (2003)
  11. C. Manea and M. Mulder, 'Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications', J. Membr. Sci., 206, 443 (2002) https://doi.org/10.1016/S0376-7388(01)00787-6
  12. C. Heitner-Wirguin, 'Recent advances in perfluorinated ionomer membranes: structure, properties and applications', J. Membr. Sci., 120, 1 (1996) https://doi.org/10.1016/0376-7388(96)00155-X
  13. D. S. Kim, T. I. Yun, M. Y. Seo, H. I. Cho, Y. M. Lee, S. Y. Nam, and J. W. Rhim, 'Preparation of ion-exchange membranes for fuel cell based on crosslinked PVA/PSSA_MA/silica hybrid', Desalination, 200, 634 (2006) https://doi.org/10.1016/j.desal.2006.03.456
  14. D. S. Kim, M. D. Guiver, S. Y. Nam, T. I. Yun, M. Y. Seo, S. J. Kim, H. S. Hwang, and J. W. Rhim, 'Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid)', J. Membr. Sci., 281, 156 (2006)
  15. D. S. Kim, M. D. Guiver, M. Y. Seo, H. I. Cho, D. H. Kim, J. W. Rhim, G. Y. Moon, and S. Y. Nam, 'Influence of silica content in crosslinked PVA/PSSA_MA/silica hybrid membrane for direct methanol fuel cell (DMFC)', Macromol. Res., 15, 412 (2007) https://doi.org/10.1007/BF03218807
  16. B. S. Pivovar, Y. Wang, and E. L. Cussler, 'Pervaporation membranes in direct methanol fuel cells', J. Membr. Sci., 154, 155 (1999) https://doi.org/10.1016/S0376-7388(98)00264-6
  17. L. E. Karlsson, B. Wesslén, and P. Jannasch, 'Water absorption and proton conductivity of sulfonated acrylamide copolymers', Electrochim Acta, 47, 3269 (2002) https://doi.org/10.1016/S0013-4686(02)00244-X
  18. B. Smitha, S. Sridhar, and A. A. Khan, 'Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells', Macromolecules, 37, 2233 (2004) https://doi.org/10.1021/ma0355913
  19. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, 'Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes', Solid State Ionics, 176, 117 (2005) https://doi.org/10.1016/j.ssi.2004.07.011
  20. J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, 'Fixation of Nanosized Proton Transport Channels in Membranes', Macromolecules, 36, 3228 (2003) https://doi.org/10.1021/ma034014b