Manufacturing artificial lightweight aggregates using coal bottom ash and clay

석탄 바닥재와 점토를 이용한 인공경량골재 제조

  • Kim, Kang-Duk (Department of Materials Engineering, Kyonggi University) ;
  • Kang, Seung-Gu (Department of Materials Engineering, Kyonggi University)
  • Published : 2007.12.31

Abstract

The artificial lightweight aggregate (ALA) was manufactured using coal bottom ashes produced from a thermoelectric power plant with clay and, the sintering temperature and batch composition dependence upon physical properties of ALA were studied. The bottom ash (BA) had 13wt% coarse particle (>4.75mm) and showed very irregular shape so should be crushed to fine particles to be formed with clay by extrusion process. Also the bottom ash contained a many unburned carbon which generates the gas by oxidation and lighten a aggregate during a sintering process. Plastic index of green bodies decreased with increasing bottom ash content but the extrusion forming process was possible for the green body containing BA up to 40wt% whose plastic index and plastic limit were around 10 and 22 respectively. The ALA containing $30{\sim}40wt%$ BA sintered at $1100{\sim}1200^{\circ}C$ showed a volume specific density of $1.3{\sim}1.5$ and water absorption of $13{\sim}15%$ and could be appled for high-rise building and super-long bridge.

화력발전소에서 발생하는 석탄 바닥재(bottom ash)와 점토를 혼합하여 성형 후, 소성하여 인공경량골재를 제조하고, 소성온도와 조성 변화에 따른 물성을 분석하였다. 바닥재는 입경이 4.75mm 이상인 입자가 13wt% 정도로 거친 분말로 압출성형을 위하여 미분쇄 공정이 필요하였다. 또한 바닥재는 미연탄소(C)를 다량 함유하고 있어 소결 시 C의 산화반응과 이에 따른 가스발생으로 소결체의 경량화를 유도하였다. 점토에 바닥재 첨가량이 증가할수록 소성 지수가 감소하였고 이에 따라 성형체의 성형성이 저하되었으나 바닥재 첨가량이 40wt% 까지의 성형체는 소성 지수 및 소성 한계값이 각각 약 10과 22로서 압출성형이 가능하였다. 바닥재가 $30{\sim}50wt%$ 첨가되고 $1150{\sim}1200^{\circ}C$ 범위에서 소결된 골재는 부피비중 $1.3{\sim}1.5$, 흡수율 $14{\sim}16%$를 나타냈고 따라서 고층빌딩이나 교량 등의 골재대체재로써의 가능성이 확인되었다.

Keywords

References

  1. The Monthly Report on Major Electric Power Statis­tics, No.334, Korea Electric Power Corporation, KOREA, 2007
  2. Press report, The Office for Government Policy Coordi­nation, KOREA, 2006
  3. D.U. Lee and Y.S. Kim, 'A study on the strength prop­erties of concrete containing bottom ash as a part of fine aggregate', J. Architectural Institute of Kor. 22(6) (2006) 79
  4. S.U. Shin, S. Kumar, T.U. Jung and B.W. Shin, 'The strength and characteristic of PCC bottom ash', J. Kor. Geo-Environ. Soc. 8(2) (2007) 57
  5. I. Kula, A. Olgun, V. Sevinc and Y. Erdogan, 'An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as portland cement replacement materi­als', Cement and Concrete Research 32 (2002) 227 https://doi.org/10.1016/S0008-8846(01)00661-5
  6. J.H. Tay, S.Y. Hong and K.Y. Show, 'Reuse of indus­trial sludge as pelletized aggregate for concrete', J. Environ. Engin. 126(3) (2000) 279 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:3(279)
  7. J.H. Tay, K.Y. Show and S.Y. Hong, 'Concrete aggre­gates made from sludge-marine clay mixes', J. Mater. Civil Engin. 14(5) (2002) 392 https://doi.org/10.1061/(ASCE)0899-1561(2002)14:5(392)
  8. X. Lingling, G. Wei, W. Tao and W. Nanru, 'Study on the fired brick replacing clay by fly ash in high volume ratio', Construction and Building Materials 19 (2005) 243 https://doi.org/10.1016/j.conbuildmat.2004.05.017
  9. M.A. Siddiqui, S. Ahmed and A.A. Saleemi, 'Evalua­tion of swat kaolin deposits of Pakistan for industrial uses', Applied Clay Science 29 (2005) 55 https://doi.org/10.1016/j.clay.2004.09.005
  10. J.A. Bain, 'A plasticity chart as an aid to the identifica­tion and assessment of industrial minerals', Clay Miner. 9 (1971) 1 https://doi.org/10.1180/claymin.1971.009.1.01
  11. S.M. Han, D.Y. Shin and S.K. Kang, 'Preparation for porous ceramics using low grade clay', J. Kor. Cer. Soc. 35(6) (1998) 575
  12. C.M. Riley, 'Relation of chemical properties to the bloating of clays', J. Amer. Cer. Soc. 34(4) (1950) 121
  13. C.R. Austin, J.L. Nunes and J.D. Sulivan, 'Basic fac­tors involved in bloating of clays', American Institute of Mining and Metallurgical Engineers Technical Publica­tion 1486 (1942) 1
  14. F. Negre, A. Barba, J.L. Amoros and A. Escardino, 'Oxidation of black core during the firing of ceramic ware - 2. Process kinetics', Br. Ceram., Trans. 91 (1992) 5