DOI QR코드

DOI QR Code

Effects of Lipopolysaccharide on Pharmacokinetics of Drugs

  • Yang, Kyung-Hee (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Myung-Gull (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • 발행 : 2007.12.31

초록

Lipopolysaccharide (LPS) endotoxin is an active component in the outer membrane of Gram-negative bacteria. LPS is usually used as an inflammatory animal model. During the inflammation, diarrhea and changes in plasma proteins, in hepatic and/or intestinal microsomal cytochrome P450 (CYP) isozymes, and in the renal and/or biliary excretion of drugs have been reported. Thus, in rats pretreated with lipopolysaccharide endotoxin isolated from Klebsiella pneumoniae (KPLPS rats), the absorption, distribution, metabolism, and excretion of drugs could be expected to be altered. Interestingly time-dependent effects on the hepatic CYP isozymes have been reported in KPLPS rats. Thus, in KPLPS rats, the pharmacokinetics of drugs which are mainly metabolized via CYP isozymes could be expected to be time-dependent. In this review, an attempt to explain changes in pharmacokinetics of drug reported in the literature was made in terms of CYP isozyme changes or urinary and/or biliary excretion changes in KPLPS rats.

키워드

참고문헌

  1. Akiyama, H., Abe, Y., Kusumoto, N. and Odomi, M. (1995). Pharmacokinetics of grepafloxacn (II): absorption, distribution and excretion after oral administratio of [$^{14}C$]-grepafloxacin in rats. Chemotherapy, 43, 107-124
  2. Ando, K., Nishio, Y., Ito, K., Nakao, A., Wang, L., Zhao, Y.L., Kitaichi, K., Takagi, K. and Hasegawa, T. (2001). Effect of endotoxin on P-glycoproein-mediated biliary and renal excretion of rhodamine-123 in rats. Antimicrob. Agents Chemother., 45, 3462-3467 https://doi.org/10.1128/AAC.45.12.3462-3467.2001
  3. Bae, S.K., Lee, S.J., Kwon, J.W., Kim, W.B., Lee, I. and Lee, M.G. (2004). Effects of bacterial lipopolysaccharide on the pharmacokinetics of DA-7867, a new oxazolidone, in rats. J. Pharm. Sci., 93, 2364-2373 https://doi.org/10.1002/jps.20143
  4. Bae, S.K., Kim, E.J., Kwon, J.W., Kim, W.B., Lee, I. and Lee, M.G. (2005). Excretion and metabolism of DA-7867, a new oxazolidinone, in rats. Biopharm. Drug Dispos., 26, 67-75 https://doi.org/10.1002/bdd.434
  5. Bertini, R., Bianchi, M., Erroi, A., Villa, P. and Ghezzi, P. (1989). Dexamethasone modulation of in vivo effects of endotoxin, tumor necrosis factor, and interleukin-1 on liver cytochrome P-450, plasma fibrinogen, and serum iron. J. Leukoc. Biol., 46, 254-262 https://doi.org/10.1002/jlb.46.3.254
  6. Cassatella, M.A., Meda, L., Bonora, S., Ceska, M. and Constantin, G. (1993). Interleukin 10 (IL-10) inhibits the release of proinflammatory cytokines from human polymorphonuclear leukocytes. Evidence for an autocrine role of tumor necrosis factor and IL-1 beta in mediating the production of IL-8 triggered by lipopolysaccharide. J. Exp. Med., 78, 2207-2211
  7. Cavanagh, D., Rao, P.S., Sutton, D.M., Bhagat, B.D. and Bachmann, F. (1970). Pathophysiology of endotoxin shock in the primate. Am. J. Obstet. Gynecol., 108, 705-722 https://doi.org/10.1016/0002-9378(70)90535-1
  8. Cheng, PY., Wang, M. and Morgan, E.T. (2003). Rapid transcriptional suppression of rat cytochrome P450 genes by endotoxin treatment and its inhibition by curcumin. J. Pharmacol. Exp. Ther., 307, 1205-1212 https://doi.org/10.1124/jpet.103.057174
  9. Choi, Y.H. and Lee, M.G. (2006). Effects of enzyme inducers and inhibitors on the pharmacokinetics of metformin in rats: involvement of CYP2C11, 2D1 and 3A1/2 for the metabolism of metformin. Br. J. Pharmacol., 149, 424-430 https://doi.org/10.1038/sj.bjp.0706875
  10. Choi, Y.H., Kim, S.G. and Lee, M.G. (2006). Dose-independent pharmacokinetics of metformin in rats: hepatic and gastrointestinal first-pass effects. J. Pharm. Sci., 95, 2543- 2552 https://doi.org/10.1002/jps.20744
  11. Choi, Y.H., Lee, I. and Lee, M.G. (2007a). Effects of bacterial lipopolysaccharide on the pharmacokinetics of metformin in rats. Int. J. Pharm., 337, 194-201 https://doi.org/10.1016/j.ijpharm.2007.01.001
  12. Choi, Y.H., Lee, I. and Lee, M.G. (2007b). Effects of water deprivation on the pharmacokinetics of metformin in rats. Biopharm. Drug Dispos., 28, 373-383 https://doi.org/10.1002/bdd.564
  13. Churchill, P.C., Bidani, A.K. and Schwartz, M.M. (1987). Renal effects of endotoxin in the male rat. Am. J. Physiol., 253, F244-F250
  14. Crawford, E.K., Ensor, J.E., Kalvakolanu, I. and Hasday, J.D. (1993). The role of 3' poly(A) tail metabolism in tumor necrosis factor-alpha regulation. J. Biol. Chem., 272, 21120-21127 https://doi.org/10.1074/jbc.272.34.21120
  15. Davies, B. and Morris, T. (1993). Physiological parameters in laboratory animals and humans. Pharm. Res., 10, 1093- 1095 https://doi.org/10.1023/A:1018943613122
  16. Engel, G., Hofmann, U., Heidemann, H., Cosme, J. and Eichelbaum, M. (1996). Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin. Pharmacol. Ther., 59, 613-623 https://doi.org/10.1016/S0009-9236(96)90001-6
  17. Evans, T.J., Strivens, E., Carpenter, A. and Cohen, J. (1993). Differences in cytokine response and induction of nitric oxide synthase in endotoxin-resistant and endotoxin-sensitive mice after intravenous gram-negative infection. J. Immunol., 150, 5033-5040
  18. Ferrari, L., Peng, N., Halpert, J.R. and Morgan, E.T. (2001). Role of nitric oxide in down-regulation of CYP2B1 protein, but not RNA, in primary cultures of rat hepatocytes. Mol. Pharmacol., 60, 209-216 https://doi.org/10.1124/mol.60.1.209
  19. Freudenberg, M.A., Keppler, D. and Galanos, C. (1986). Requirement for lipopolysaccharide-responsive macrophages in galactosamine-induced sensitization to endotoxin. Infect. Immun., 51, 891-895
  20. Gilbert, R.P. (1960). Mechanisms of the hemodynamic effects of endotoxin. Physiol. Rev., 40, 245-279 https://doi.org/10.1152/physrev.1960.40.2.245
  21. Gorodischer, F., Krasner, J., McDevitt, J.J., Nolan, J.P. and Yaffe, S.J. (1976). Hepatic microsomal drug metabolism after administration of endotoxin in rats. Biochem. Pharmacol., 25, 351-353 https://doi.org/10.1016/0006-2952(76)90226-4
  22. Haghgoo, S., Hasegawa, T., Nadai, M., Wang, L., Nabeshima, T. and Kato, N. (1995). Effect of a bacterial lipopolysaccharide on biliary excretion of a $\beta$-lactam antibiotic, cefoperazone, in rats. Antimicrob. Agents Chemother., 39, 2258-2261 https://doi.org/10.1128/AAC.39.10.2258
  23. Hasegawa, T., Ohta, M., Kido, N., Kato, N., Miyamoto, K. and Koshiura, R. (1985). Comparative studies on antitumor activity of Klebsiella O3 lipopolysaccharide and its polysaccharide fraction in mice. Jpn. J. Pharmacol., 38, 355-360 https://doi.org/10.1254/jjp.38.355
  24. Hasegawa, T., Nadai, M., Wang, L., Takayama, Y., Kato, K., Nabeshima, T. and Kato, K. (1994a). Renal excretion of famotidine and role of adenosine in renal failure induced by bacterial lipopolysccharide in rats. Drug Metab. Dispos., 22, 8-13
  25. Hasegawa, T., Nadia, M., Wang, L., Haghgoo, S., Nabeshima, T. and Kato, N. (1994b). Influence of endotoxin and lipid A on the renal handling and accumulation of gentamicin in rats. Biol. Pharm. Bull., 17, 1651-1655 https://doi.org/10.1248/bpb.17.1651
  26. Hewett, J.A. and Roth, R.A. (1993). Hepatic and extrahepatic pathobiology of bacterial lipopolysaccharides. Pharmacol. Rev., 45, 382-411
  27. Hinshaw, L.B., Brandley, G.M. and Carlson, C.H. (1959), Effect of endotoxin on renal function in the dog. Am. J. Physiol., 196, 1127-1131
  28. Ji, H.Y., Lee, H.W. and Kim, H.H. (2004). Role of human cytochrome P450 3A4 in the metabolism of DA-8159, a new erectogenic. Xenobiotica, 34, 973-992 https://doi.org/10.1080/00498250400010898
  29. Kalitsky-Szirtes, J., Shayeganpour, A., Brocks, D.R. and Piquette-Miller, M. (2004). Suppression of drug-metabolizing enzymes and efflux transporters in the intestine of endotoxin-treated rats. Drug Metab. Dispos., 32, 20-27 https://doi.org/10.1124/dmd.32.1.20
  30. Kato, N., Ohta, M., Kido, N., Naito, S., Nakashima, I., Nagase, F. and Yokochi, T. (1985). Strong adjuvanticity of bacterial lipopolysaccharides possessing the homopolysaccharides consisting of mannose as the O-specific polysaccharide chains. Med. Microbiol. Immunol., 174, 1-14
  31. Kido, N., Ohta, M., Ito, H., Naito, S., Nagase, F., Nakashima, I. and Kato, N. (1985). Potent adjuvant action of lipopolysaccharides possessing the O-specific polysaccharide moieties consisting of mannans in antibody response against protein antigen. Cell. Immunol., 91, 52-59 https://doi.org/10.1016/0008-8749(85)90031-0
  32. Kikeri, D., Pennell, J.P., Hwang, K.H., Jacob, A.I., Richman, A.V. and Bourgoignie, J.J. (1986). Endotoxemic acute renal failure in awake rats. Am. J. Physiol., 250, F1098- F1106
  33. Kim, Y.C., Shim, H.J., Lee, J.H., Kim, S.H., Kwon, J.W., Kim, W.B. and Lee, M.G. (2005a). Effects of enzyme inducers and inhibitors on the pharmacokinetics of intravenous DA- 8159, a new erectogenic, in rats. Biopharm. Drug Dispos., 26, 233-241 https://doi.org/10.1002/bdd.453
  34. Kim, Y.C., Yoo, M. and Lee, M.G. (2005b). DA-8159, Erectogenic. Drugs Future, 30, 678,682 https://doi.org/10.1358/dof.2005.030.07.918084
  35. Kunihara, M., Nagai, J., Murakami, T. and Takano, M. (1998). Renal excretion of rhodamine 123, a P-glycoprotein substrate, in rats with glycerol-induced acute renal failure. J. Pharm. Pharmacol., 50, 1161-1165 https://doi.org/10.1111/j.2042-7158.1998.tb03328.x
  36. Kushner, I. (1982). The phenomenon of the acute phase response. Ann. N. Y. Acad. Sci., 389, 39-48 https://doi.org/10.1111/j.1749-6632.1982.tb22124.x
  37. Leclercq, V., Desager, J.P., Horsmans, Y., van Nieuwenhuyze, Y. and Harvengt, C. (1989). Influence of rifampicin, phenobarbital and cimetidine on mixed function monooxygenase in extensive and poor metabolizers of debrisoquine. Int. J. Clin. Pharmacol. Ther. Toxicol., 27, 593-598
  38. Lee, M.G. and Chiou, W.L. (1983). Evaluation of potential causes for the incomplete bioavailability of furosemide: gastric first-pass metabolism. J. Pharmacokinet. Biopharm., 11, 623-640 https://doi.org/10.1007/BF01059061
  39. Lee, J.H. and Lee, M.G. (2007a). Effects of acute renal failure on the pharmacokinetics of telithromycin in rats: negligible effects of increase in CYP3A1 on the metabolism of telithromycin. Biopharm. Drug Dispos., 28, 157-166 https://doi.org/10.1002/bdd.542
  40. Lee, J.H. and Lee, M.G. (2007b). Dose-dependent pharmacokinetics of telithromycin after intravenous and oral administration to rats: contribution of intestinal first-pass effect to low bioavailability. J. Pharm. Pharm. Sci., 10, 37-50
  41. Lee, J.H., Cho, Y.K. and Lee, M.G. (2007a). Time-dependent effects of Klebsiella pneumoniae endotoxin (KPLPS) on telithromycin pharmacokinetics in rats; return of the parameters in 96-hour KPLPS to the control levels. Proceedings of the Convention of the Pharmaceutical Society of Korea, Hotel-Seoul Kyoyuk Munhwa Hoekwan, Nov. 7-8, 2007, Abstract p. 414
  42. Lee, J.H., Kim, Y.C., Kwon, J.W., Kim, W.B. and Lee, M.G. (2007b). Effects of bacterial lipopolysaccharide on the pharmacokinetics of DA-8159, a new erectogenic in rats. Res. Commun. Mol. Pathol. Pharmacol., (in press)
  43. Levy, R.H., Thummel, K.E., Trager, W.F., Hansten, P.D. and Eichelbaum, M. Metabolic Drug Interactions. Philadelphia, BA, USA: Lippincott Williams & Wilkins, a Wolters Kluwer Company, 2000
  44. Lewis, D.F.V. (1996). Chapter 4. P450. Substrate specificity and metabolism. In Cytochromes P450, Structure, Function and Mechanism. (Lewis, D.F.V. Ed.) 2nd edn. Bristol, PA, USA: Taylor & Francis, p. 123
  45. Liu, P., McGuire, G.M., Fisher, M.A., Farhood, A., Smith, C.W. and Jaeschke, H. (1995). Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced liver injury after hepatic ischemia. Shock, 3, 56-62 https://doi.org/10.1097/00024382-199501000-00010
  46. Llewelyn, M. and Cohen, J. (2001). New insights into the pathogenesis and therapy of sepsis and septic shock. Curr. Clin. Top. Infect. Dis., 21, 148-171
  47. Matsunaga, Y., Miyazaki, H., Oh-e, Y., Nambu, K., Furkawa, H., Yoshida, K. and Hashimoto, M. (1991). Disposition and metabolism of TEX>$^{14}C$-sparfloxacn in the rat. Arzneim-Forsch/ Drug Res., 41, 747-759
  48. Minors, J.O. and McKinnon, R.A. (2000). CYP1A. In Metabolic Drug Interactions. (Levy, R.H., Thummel, K.E., Trager, W.F., Hansten, P.D. and Eichelbaum, M. Eds.) A Wolters Kluwer Company, Philadelphia, PA, USA: Lippincott Williams & Wilkins, pp. 61-74
  49. Mitruka, B.M. and Rawnsley, H.M. (1981). Clinical Biomedical and Hematological Reference Values in Normal Experimental Animals and Normal Humans, 2nd ed. Masson Publishing USA Inc., New York. NY
  50. Miyamoto, K., Koshiura, R., Hasegawa, T. and Kato, N. (1984). Antitumor activity of Klebsiella 03 lipopolysaccharide in mice. Jpn. J. Pharmacol., 36, 51-57 https://doi.org/10.1254/jjp.36.51
  51. Miyamoto, K., Takagi, K., Sakai, R., Wakusawa, S., koshiura, R., Nadai, M., Apichartpichean, R. and Hasegawa, T. (1989). Correlation between hydrophobicity of N-alkylxanthine derivatives and their biological activities on guineapig isolated tracheal smooth muscle. J. Pharm. Pharmacol., 41, 844-847 https://doi.org/10.1111/j.2042-7158.1989.tb06384.x
  52. Monshouwer, M., McLellan, R.A., Delaporte, E., Witkamp, R.F., van Miert, A.S.J.P.A.M. and Renton, K.W. (1996). Differential effect of pentoxifylline on lipopolysaccharideinduced downregulation of cytochrome P450. Biochem. Pharmacol., 52, 1195-1200 https://doi.org/10.1016/0006-2952(96)00468-6
  53. Morgan, E.T. (1989). Suppression of constitutive cytochrome P-450 gene expression in livers of rats undergoing an acute phase response to endotoxin. Mol. Pharmacol., 36, 699-707
  54. Morgan, E.T. (1993). Down-regulation of multiple cytochrome P450 gene products by inflammatory mediators in vivo. Independence from the hypothalamo-pituitary axis. Biochem. Pharmacol., 45, 415-419 https://doi.org/10.1016/0006-2952(93)90078-B
  55. Morgan, E.T., Li-Masters, T. and Cheng, P.Y. (2002). Mechanisms of cytochrome P450 regulation by inflammatory mediators. Toxicology, 181-182, 207-210
  56. Nadai, M., Hasegawa, T., Kato, K., Wang, L., Nabeshima, T. and Kato, N. (1993a). The disposition and renal handling of enprofylline in endotoxemic rats by bacterial lipopolysaccharide (LPS). Drug Metab. Dispos., 21, 611-616
  57. Nadai, M., Hasegawa, T., Kato, K., Wang, L., Nabeshima, T. and Kato. N. (1993b). Influence of a bacterial lipopolysaccharide on the pharmacokinetics of pharmacokinetics of tobramycin in rats. J. Pharm. Pharmacol., 45, 971-974 https://doi.org/10.1111/j.2042-7158.1993.tb05638.x
  58. Nadai, M., Hasegawa, T., Kato, K., Wang, L., Nabeshima, T. and Kato, N. (1993c). Alterations in pharmacokinetics and protein binding behavior of cefazoiln in endotoxemic rats. Antimicrob. Agents Chemother., 37, 1781-1785 https://doi.org/10.1128/AAC.37.9.1781
  59. Nadai, M., Hasagawa, T., Wang, L., Haghgoo, S., Nabeshima, T. and Kato, N. (1995). Time-dependent changes in the pharmacokinetics and renal excretion of xanthine derivative enprofylline induced by bacterial endotoxin in rats. Biol. Pharm. Bull., 18, 1089-1093 https://doi.org/10.1248/bpb.18.1089
  60. Nadai, M., Hasegawa, T., Wang, L., Haghgoo, S., Okasaka, T., Mabeshima, T. and Kato, N. (1996). Alterations in renal uptake kinetics of the xanthine derivative enprofylline in endotoxaemic mice. J. Pharm. Pharmacol., 48, 744-748 https://doi.org/10.1111/j.2042-7158.1996.tb03963.x
  61. Nadai, M., Sekido, T., Matsuda, I., Li, W., Kitaichi, K., Itoh, A., Nabeshima, T. and Hasegawa, T. (1998). Time-dependent effects of Klebsiella pneumoniae endotoxin on hepatic drug-metabolizing enzyme activity in rats. J. Pharm. Pharmacol., 50, 871-879 https://doi.org/10.1111/j.2042-7158.1998.tb04002.x
  62. Nadai, M., Zhao, Y.L., Wang, L., Nishio, Y., Takagi, K., Kitaichi, K., Takagi, K., Yshizumi, H. and Hasegawa, T. (2001). Endotoxin impairs biliary transport of sparfloxacin and its gucuronide in rats. Eur. J. Pharm., 432, 99-105 https://doi.org/10.1016/S0014-2999(01)01470-4
  63. Nadai, M., Kato, M., Yasui, K., Kimura, M., Zhao, Y.L., Ueyama, J., Tsumekawa, Y., Yoshizumi, H. and Kasegawa, Y. (2007). Lack of effect of acyclovir on metabolism of theophylline and expression of hepatic cytochrome P450 1A2 in rats. Biol. Pharm. Bull., 30, 562-568 https://doi.org/10.1248/bpb.30.562
  64. Ogawa, K., Takagi, K. and Satake, T. (1989). Mechanism of xanthine-induced relaxation of guinea-pig isolated trachealis muscle. Br. J. Pharmacol., 97, 542-546 https://doi.org/10.1111/j.1476-5381.1989.tb11983.x
  65. Ohta, M., Nakashima, I. and Kato, N. (1982). Adjuvant action of bacterial lipopolysaccharide in induction of delayed-type hypersensitivity to protein antigens. II. Relationships of intensity of the action to that of other immunological activities. Immunobiology., 163, 460-469 https://doi.org/10.1016/S0171-2985(82)80060-0
  66. Ortiz de Montellano, P.R. (2005). Cytochrome P450. Structure, Mechanism, and Biochemistry. 3rd edn. New York, USA: Kluwer Academic/Plenum Publishers
  67. Remick, D., Manohar, P., Bolgos, G., Rodriguez, J., Moldawer, L. and Wollenberg, G. (1995). Blockade of tumor necrosis factor reduces lipopolysaccharide lethality, but not the lethality of cecal ligation and puncture. Shock, 4, 89-95 https://doi.org/10.1097/00024382-199508000-00002
  68. Rietschel, E.T., Kirikae, T., Schade, F.U., Ulmer, A.J., Holst, O., Brade, H., Schmidt, G., Mamat, U., Grimmecke, H.D. and Kusumoto, S. (1993). The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology, 187, 169-190 https://doi.org/10.1016/S0171-2985(11)80338-4
  69. Roe, A.L., Warren, G., Hou, G., Howard, G., Shedlofsky, S.I. and Blouin, R.A. (1998). The effect of high dose endotoxin on CYP3A2 expression in the rat. Pharm. Res., 15, 1603-1608 https://doi.org/10.1023/A:1011915402914
  70. Sachdeva, K., Yan, B. and Chichester, C.O. (2003). Lipopolysaccharide and cecal ligation/puncture differentially affect the subcellular distribution of the pregnane X receptor but consistently cause suppression of its target genes CYP3A. Shock, 19, 469-474 https://doi.org/10.1097/01.shk.0000048903.46342.ec
  71. Scheen, A.J. (1996). Clinical pharmacokinetics of metformin. Clin. Pharmacokinet., 30, 359-371 https://doi.org/10.2165/00003088-199630050-00003
  72. Sewer, M.B. and Morgan, E.T. (1998). Down-regulation of the expression of three major rat liver cytochrome P450S by endotoxin in vivo occurs independently of nitric oxide production. J. Pharmacol. Exp. Ther., 287, 352-358
  73. Sewer, M.B., Koop, D.R. and Morgan, E.T. (1996). Endotoxemia in rats is associated with induction of the P4504A subfamily and suppression of several other forms of cytochrome P450. Drug Metab. Dispos., 24, 401-407
  74. Shi, J., Montay, G. and Bhargava, V.O. (2005). Clinical pharmacokinetics of telithromycin, the first ketolide antibacteantibacterial. Clin. Pharmacokinet., 44, 915-934 https://doi.org/10.2165/00003088-200544090-00003
  75. Shim, H.J., Kim, Y.C., Park, K.J., Kim, D.S., Kwon, J.W., Kim, W.B. and Lee, M.G. (2003). Pharmacokinetics of DA-8159, a new erectogenic, after intravenous and oral administration to rats: hepatic and intestinal first-pass effects. J. Pharm. Sci., 11, 2185-2195
  76. Szakacs, T., Veres, Z. and Vereczkey, L. (2001). Effect of phenobarbital and spironolactone treatment on the oxidative metabolism of antipyrine by rat liver microsomes. Pol. J. Pharmacol., 53, 11-19
  77. Ueyama, J., Nadai, M., Kanazawa, H., Iwase, M., Nakayama, H., Hashimoto, K., Yokoi, T., Baba, K., Takagi, K., Takagi, K. and Hasegawa, T. (2005). Endotoxin from various gram-negative bacteria has differential effects on function of hepatic cytochrome P450 and drug transporters. Eur. J. Pharmacol., 510, 127-134 https://doi.org/10.1016/j.ejphar.2005.01.025
  78. Wang, L., Hasegawa, T., Nadai, M., Muraoka, I., Nabeshima, T. and Kato, N. (1993). The effect of lipopolysaccharide on the disposition of xanthines in rats. J. Pharm. Pharmacol., 45, 34-38 https://doi.org/10.1111/j.2042-7158.1993.tb03675.x
  79. Westphal, O., Jann, K. and Himmelspach, K. (1983). Chemistry and immunochemistry of bacterial lipopolysaccharides as cell wall antigens and endotoxins. Prog. Allergy, 33, 9- 39
  80. Wilkinson, G.R. and Shand, D.G. (1975). A physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther., 18, 377-390 https://doi.org/10.1002/cpt1975184377
  81. Williams, J.F., Lowitt, S. and Szentivanyi, A. (1979). Effect of phenobarbital and 3-methylcholanthrene pretreatment on the plasma half-life and urinary excretion profile of theophylline and its metabolites in rats. Biochem. Pharmacol., 8, 2935-2940
  82. Wright, K. and Morgan, E.T. (1990). Transcriptional and posttranscriptional suppression of P450IIC11 and P450IIC12 by inflammation. FEBS Lett., 271, 59-61 https://doi.org/10.1016/0014-5793(90)80371-O
  83. Yang, K.H., Jung, Y.S., Lee, D.Y., Lee, J.H., Kim, Y.C. and Lee, M.G. (2007). Time-dependent effects of Klebsiella pneumoniae endotoxin (KPLPS) on the pharmacokinetics of theophylline in rats; return of the parameters in 96-h KPLPS rats to the control levels. Proceedings of the Convention of the Pharmaceutical Society of Korea, Hotel- Seoul Kyoyuk Munhwa Hoekwan, Nov. 7-8, 2007, Abstract p. 419
  84. Yang, K.H., Lee, J.H. and Lee, M.G. (2008). Effects of CYP inducers and inhibitors on the pharmacokinetics of intravenous theophylline in rats: involvement of CYP1A1/2 in the formation of 1,3-DMU. J. Pharm. Pharmcol., (in press)

피인용 문헌

  1. vol.61, pp.12, 2010, https://doi.org/10.1211/jpp.61.12.0008