DOI QR코드

DOI QR Code

혈청호모시스테인 농도와 호모시스테인 유도성-세포 세네센스에 대한 표고버섯분말의 영향

Effects of Lentinus edodes-powder on Serum Homocysteine Level and Homocysteine-induced Replicative Senescence

  • 박영철 (대구가톨릭대학교 바이오안전성센터) ;
  • 김민희 (대구가톨릭대학교 바이오안전성센터) ;
  • 김종봉 (대구가톨릭대학교 자연대학 의생명과학과)
  • Park, Yeong-Chul (Center for Bio-Safety, Catholic University of Daegu) ;
  • Kim, Min-Hee (Center for Bio-Safety, Catholic University of Daegu) ;
  • Kim, Jong-Bong (Department of Medicinal Life Science, Catholic University of Daegu)
  • 발행 : 2007.12.31

초록

Elevated blood levels of homocysteine (a sulfur-containing amino acid) have been linked to increased risk of cerebrovascular disease including Alzheimer's disease. A recent study suggests that elevated homocysteine levels may lead to replicative senescence in vitro called 'permanent arrest of cell cycle' caused by oxidative stress. In this study, serum homocysteine level in rat was reduced by Lentinus edodes-powder diet, resulting in the reduced level of oxidative stress in rat brain. In addition, homocysteine-induced replicative senescence treated with or without Lentinus edodes-powder was analyzed by population doubling in vitro. The Lentinus edodes-powder induced a increased number of population doubling in primary neuron cell isolated from rat-cerebral cortex. This indicates that Lentinus edodes-powder would delay a homocysteine-induced aging of neuron cells in brain, showing a possible role in preventing cerebrovascular diseases including Alzheimer's disease.

키워드

참고문헌

  1. Allen, R.H., Stabler, S.P. and Lindenbaum, J. (1998). Relevance of vitamins, homocysteine and other metabolites in neuropsychiatricdisorders. Eur. J. Pediatr., 157, 122-126 https://doi.org/10.1007/s004310050782
  2. Allsopp, R.C. (1996). Models of initiation of replicative senescence by loss of telomeric DNA. Gerontol., 31, 235-243
  3. Baydas, G., Ozer, M., Yasar, A., Tuzcu, M. and Koz, S.T. (2005). Melatonin improves learning and memory performances impaired by hyperhomocysteinemia in rats. Brain Res., 1046, 187-194 https://doi.org/10.1016/j.brainres.2005.04.011
  4. Bierman, E.L. (1978). The effect of donor age on the in vitro lifespan of cultured human arterial smooth-muscle cells. In vitro Cell. Dev. Biol., 14, 951-955 https://doi.org/10.1007/BF02616126
  5. Bleich, S.M., Carl, K., Bayerlein, K., Reulbach, U., Biermann, T., Hillemacher, T. and Bonsch, D. (2005). Evidence of increased homocysteine levels in alcoholism, the Franconianalcoholism research studies (FARS). J. Alcohol Clin. Exp. Res., 29, 334-336 https://doi.org/10.1097/01.ALC.0000156083.91214.59
  6. Campisi, J. (1996). Replicative senescence: an old lives' tale? Cell, 23, 497-500
  7. Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J. and Ames, B.N. (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl. Acad. Sci. USA, 9, 4337-4341
  8. Counter, C.M., Avilion, A.A., LeFeuvre, C.E., Stewart, N.G., Greider, C.W., Narley, C.B. and Bacchetti, S. (1992). Telomere shorterning assocciated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J., 11, 1921-1929
  9. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira- Smith, O., Peacocke, M. and Campisi, J. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci., 92, 9363- 9367
  10. Dong, F., Zhang, X., Li, S.Y., Zhang, Z., Ren, Q., Culver, B. and Ren, J. (2005). Possible involvement of NADPH oxidase and JNK in homocysteine-induced oxidative stress and apoptosis in human umbilical vein endothelial cells. Cardiovasc. Toxicol., 5, 9-20 https://doi.org/10.1385/CT:5:1:009
  11. Finkelstein, J.D. (1998). The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr., 157, 40-44 https://doi.org/10.1007/PL00014300
  12. Fortin, L.J. and Genest, J. Jr. (1995). Measurement of homocysteine in the prediction of arteriosclerosis. Clin. Biochem., 28, 155-162 https://doi.org/10.1016/0009-9120(94)00073-5
  13. Furumoto, K., Inoue, E., Nagao, N., Hiyama, E. and Miwa, N. (1998). Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci., 63, 935-948 https://doi.org/10.1016/S0024-3205(98)00351-8
  14. Eto, K.T., Asada, K., Arima, T., Makifuchi, H. and Kimura. (2002). Brain hydrogen sulfide is severely decreased in Alzheimer's disease. Biochem. Biophys. Res. Commun., 293, 1485-1488 https://doi.org/10.1016/S0006-291X(02)00422-9
  15. Gallucci, M., Zanardo, A., De Valentin, L. and Vianello, A. (2004). Homocysteine in Alzheimer disease and vascular dementia. Arch. Gerontol. Geriatr. Suppl., 9, 195-200
  16. Goldstein, S.E. (1990). Replicative senescence: the human fibroblast comes of age. Science, 1129-1132
  17. Gredilla, R., Barja, G. and Lopez-Torres, M. (2001). Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart. Free Radic. Res., 35, 417- 425 https://doi.org/10.1080/10715760100300931
  18. Harley, C.B., Futcher, A.B. and Greider, C.W. (1990). Telomeres shorten during ageing of human fibroblast. Nature, 345, 458-460 https://doi.org/10.1038/345458a0
  19. Hastie, N.D., Dempster, M., Dunlop, M.G., Thompson, A.M., Green, D.K. and Allshire, R.C. (1990). Telomere reduction in human colorectal carnoma and with ageing. Nature, 346, 866-868 https://doi.org/10.1038/346866a0
  20. Ho, P.I., Collins, S.C., Dhitavat, S., Ortiz, D., Ashline, D., Rogers, E. and Shea, T.B. (2001). Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. J. Neurochem., 78, 249-253 https://doi.org/10.1046/j.1471-4159.2001.00384.x
  21. Ho, P.I., Ashline, D., Dhitavat, S., Ortiz, D., Collins, S.C., Shea, T.B. and Rogers, E. (2003). Folate deprivation induces neurodegeneration: roles of oxidative stress and increased homocysteine. Neurobiol., 14, 32-42 https://doi.org/10.1016/S0969-9961(03)00070-6
  22. Iso, H., Moriyama, Y., Sato, S., Kitamura, A., Tanigawa, T., Yamagishi, K., Imano, H., Ohira, T., Okamura, T., Naito, Y. and Shimamoto, T. (2004). Serum total homocysteine concentrations and risk of stroke and its subtypes in Japanese. Circulation, 24, 304-318
  23. Johnson, T.M., Yu, X.Z., Ferrans, V.J., Lowenstein, R.A. and Finkel, T. (1996). Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl. Acad. Sci. USA, 93, 11848-11852
  24. Langman, L.J. and Cole, D.E. (1999). Homocysteine: cholesterol of the 90s? Clin. Chim. Acta., 286, 63-80 https://doi.org/10.1016/S0009-8981(99)00094-7
  25. Levine, R.L., Berlett, B.S., Moskovitz, J., Mosoni, L. and Stadtman, E.R. (1999). Methionine residues may protect proteins from critical oxidative damage. Mech. Ageing. Dev., 15, 323-332
  26. Malaguarnera, M., Ferri, R., Bella, R., Alagona, G., Carnemolla, A. and Pennisi, G. (2004). Homocysteine, vitamin B12 and folate in vascular dementia and in Alzheimer disease. Clin. Chem. Lab. Med., 42, 1032-1035 https://doi.org/10.1515/CCLM.2004.208
  27. Malinow, M.R., Levenson, J., Giral, P., Nieto, F.J., Razavian, M., Segond, P. and Simon, A. (1998). Role of blood pressure, uric acid, and hemorheological parameters on plasmahomocyst(e)ine concentration. Atherosclerosis, 24, 175-183
  28. Martens, U.M., Chavez, E.A., Poon, S.S., Schmoor, C. and Lansdorp, P.M. (2000). Accumulation of short telomeres in human fibroblasts prior to replicative senescence. Exp. Cell Res., 10, 291-299
  29. McCaddon, A., Hudson, P., Davies, G., Hughes, A., Williams, J.H. and Wilkinson, C. (2001). Homocysteine and cognitive decline in healthy elderly. Dement. Geriatr. Cogn. Disord., 12, 309-313 https://doi.org/10.1159/000051275
  30. McCully, K.S. (1969). Vascular pathology of homocysteinemia: implications for the pathogenesis ofarteriosclerosis. Am. J. Pathol., 56, 111-128
  31. Michael, C. (2004). Irizarry Biomarkers of Alzheimer Disease in Plasma. euroRX, 1, 226-234
  32. Mosharov, E., Cranford, M.R. and Banerjee, R. (2000). The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry, 24, 13005-13011
  33. Mursu, J., Voutilainen, S., Nurmi, T., Alfthan, G., Virtanen, J.K., Rissanen, T.H., Happonen, P., Nyyssonen, K., Kaikkonen, J., Salonen, R. and Salonen, J.T. (2005). The effects of coffee consumption on lipid peroxidation and plasma totalhomocysteine concentrations: a clinical trial. Free Radic. Biol. Med., 15, 527-534
  34. Polyak, K.Y., Xia, J.L., Zweier, K.W., Kinzler, B. and Vogelstein. (1997). A model for p53-induced apoptosis. Nature, 389, 300-305 https://doi.org/10.1038/38525
  35. Perna, A.F. (2003). Homocysteine and oxidative stress. Amino. Acids, 23, 409-417
  36. Prasad, K. (1999). Homocysteine, a risk factor for cardiovascular disease. Int. J. Angiol., 8, 76-86 https://doi.org/10.1007/BF01616850
  37. Quadri, P., Fragiacomo, C., Pezzati, R., Zanda, E., Forloni, G., Tettamanti, M. and Lucca, U. (2004). Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am. J. Clin. Nutr., 80, 114-122
  38. Racek, J., Rusnakova, H., Trefil, L. and Siala, K.K. (2005). The influence of folate and antioxidants on homocysteine levels and oxidative stress in patients with hyperlipidemia and hyperhomocysteinemia. Physiol. Res., 54, 87-95
  39. Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L., Brunetti, N., Porcellini, E. and Licastro, F. (2005). Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am. J. Clin. Nutr., 82, 636-643 https://doi.org/10.1093/ajcn/82.3.636
  40. Schlienger, J.L. (2003). Homocysteine and alcohol consumption. An ambiguous relationship and a newparadox. Presse Med., 15, 262-267
  41. Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D'Agostino, R.B., Wilson, P.W. and Wolf, P.A. (2002). Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Engl. J. Med., 14, 476- 483
  42. Selley, M.L. (2004). Homocysteine increases the production of asymmetric dimethylarginine in culturedneurons. Neurosci. Res., 77, 90-93 https://doi.org/10.1002/jnr.20070
  43. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D. and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 7, 593-602
  44. Sobczak, A., Wardas, W., Zielinska-Danch, W. and Pawlicki, K. (2004). The influence of smoking on plasma homocysteine and cysteine levels in passive, and active smokers. Clin. Chem. Lab. Med., 42, 408-414 https://doi.org/10.1515/CCLM.2004.072
  45. Sugrue, M.M., Wang, Y., Rideout, H.J., Chalmers-Redman, R.M. and Tatton, W.G. (1999). Reduced mitochondrial membrane potential and altered responsiveness of a mitochondrial membrane megachannel in p53-induced senescence. Biochem. Biophys. Res. Commun., 22, 123- 130
  46. van den Bosch, M.A., Bloemenkamp, D.G., Mali, W.P., Kemmeren, J.M., Tanis, B.C., Algra, A., Rosendaal, F.R. and van der Graaf, Y. (2003). Hyperhomocysteinemia and risk for peripheral arterial occlusive disease in young women. J. Vasc. Surg., 38, 772-778 https://doi.org/10.1016/S0741-5214(03)00476-2
  47. van Wymelbeke, V., Guedon, A., Maniere, D., Manckoundia, P. and Pfitzenmeyer, P.A. (2004). 6-month follow-up of nutritional status in institutionalized patients with Alzheimer's disease. J. Nutr. Health. Aging, 8, 505-508
  48. Vaziri, H. and Benchimol, S. (1996). From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp. Gerontol., 31, 295-301 https://doi.org/10.1016/0531-5565(95)02025-X
  49. Vitvitsky, V., Dayal, S., Stabler, S., Zhou, Y., Wang, H., Lentz, S.R. and Banerjee, R. (2004). Perturbations in homocysteine- linked redox homeostasis in a murine model for hyperhomocysteinemia. Am. J. Physiol. Regul. Integr. Comp. Physiol., 287, 39-46 https://doi.org/10.1152/ajpregu.00036.2004
  50. von Zglinicki, T., Saretzki, G., Docke, W. and Lotze, C. (1995). Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp. Cell Res., 220, 186-193 https://doi.org/10.1006/excr.1995.1305
  51. von Zglinicki, T., Pilger, R. and Sitte, N. (2000). Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic. Biol. Med., 1, 64-74
  52. Zeise, M.L., Knöpfel, T. and Zieglgänsberger, W. (1988). (+/-)- beta-Parachlorophenylglutamate selectively enhances the depolarizing response to L-homocysteic acid in neocortical neurons of the rat: evidence for a specific uptake system. Brain Res., 8, 373-376
  53. Zhu, J.H., Chen, J.Z., Wang, X.X., Xie, X.D., Sun, J. and Zhang, F.R. (2006). Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J. Mol. Cell Cardiol., 40, 648-652 https://doi.org/10.1016/j.yjmcc.2006.01.011
  54. Zou, C.G. and Banerjee, R. (2005). Homocysteine and redox signaling. Antioxid. Redox Signal., 7, 547-559 https://doi.org/10.1089/ars.2005.7.547