DOI QR코드

DOI QR Code

광파장 이하 주기를 갖는 금속 격자형 컬러필터

Color Filter Based on a Sub-wavelength Patterned Metal Grating

  • 이홍식 (광운대학교 전자공학과) ;
  • 윤여택 (광운대학교 전자공학과) ;
  • 이상신 (광운대학교 전자공학과) ;
  • 김상훈 (엘지 전자기술원 소자재료연구소) ;
  • 이기동 (엘지 전자기술원 소자재료연구소)
  • Lee, Hong-Shik (Department of Electronic Engineering, Kwangwoon University) ;
  • Yoon, Yeo-Taek (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University) ;
  • Kim, Sang-Hoon (Devices and Materials Lab., LG Electronics Institute of Technology) ;
  • Lee, Ki-Dong (Devices and Materials Lab., LG Electronics Institute of Technology)
  • 발행 : 2007.12.25

초록

본 논문에서는 광파장 이하의 주기를 갖는 금속 격자형 가시광선 대역 컬러필터를 제안하고 구현하였다. 이 소자는 쿼츠 기판 위의 알루미늄 금속 층에 원형 홀이 2차원으로 배열된 격자로 구성되어 있다. 격자의 구조 파라미터 즉, 금속 박막 두께, 격자 주기, 홀 크기, 홀 구성 물질의 굴절률 등이 필터의 전달특성에 미치는 영향을 분석하여 소자를 설계하였다. 특히, 격자 홀을 구성하는 물질의 굴절률을 조절함으로써 필터의 특성을 최적화하고자 시도하였다. 본 논문에서는 전자빔 직접 기록 방식을 도입하여 두 개의 소자를 구현하였는데, 이들의 설계 파라미터를 살펴보면 격자 높이는 50 nm로 동일하며, 주기는 각각 340 nm와 260 nm였다. 측정된 결과를 살펴보면, 주기가 $\Lambda=340nm$인 소자의 경우에 중심파장은 680 nm이고 최대 투과율은 57%였으며, 주기가 $\Lambda=260nm$인 소자의 경우에는 중심파장이 550 nm이고 최대 투과율을 50%였다. 특히, 계산 결과를 통하여 격자 홀을 기판과 동일한 굴절률과 동일한 물질로 채움으로써 투과효율이 15% 이상 증가함을 확인하였다.

A color filter was demonstrated incorporating a patterned metal grating in a quartz substrate. The filter is created in a metal layer perforated with a symmetric two-dimensional array of circular holes, with the pitch smaller than the wavelength of the visible light. A finite-difference time-domain simulation was performed to analyze the device by investigating the effect of structural parameters like the grating height, the period, the hole size, and the refractive index of the hole-filling material on its performance. The device performance was especially optimized by controlling the refractive index of the material comprising the holes of the grating. And two different devices were fabricated by means of the e-beam direct writing with the following design parameters: the grating height of 50 nm, the two pitches of 340 nm for the red color and 260 nm for the green color. For the prepared device with the period of 340 nm, the center wavelength was 680 nm and the peak transmission 57%. And for the other device with the pitch of 260 nm, the center wavelength was 550 nm and the peak transmission was 50%. The filling of the hole with a material whose refractive index is matched to that of the substrate has led to an increase of ${\sim}15%$ in the transmission efficiency.

키워드

참고문헌

  1. F.-J. Ko and H.-P. D. Shieh, 'High-efficiency micro-optical color filter for liquid-crystal projection system applications,' Appl. Opt., vol. 39, no. 7, pp. 1159-1163, 2000 https://doi.org/10.1364/AO.39.001159
  2. Y. Cho, Y. K. Choi, and S. H. Sohn, 'Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,' Appl. Phys. Lett., vol. 89, pp. 051102-1-051102-3, 2006 https://doi.org/10.1063/1.2244042
  3. P. B. Catrysse, W. Suh, S. Fan, and M. Peeters, 'One-mode model for patterned metal layers inside integrated color pixels,' Opt. Lett., vol. 29, no. 9, pp. 974-976, 2004 https://doi.org/10.1364/OL.29.000974
  4. T. Tanaka, M. Akazawa, E. Sano, M. Tanaka, F. Miyamaru, and M. Hangyo, ''Transmission characteristics through two-dimensional periodic hole arrays perforated in perfect conductors,' Jpn. J Appl. Phys., vol. 45, no. 5A, pp. 40584063, 2006 https://doi.org/10.1143/JJAP.45.4058
  5. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, ''Theory of extraordinary optical transmission through subwavelength hole arrays,' Phys. Rev. Lett., vol. 86, no. 6, pp. 1114-1117, 2001 https://doi.org/10.1103/PhysRevLett.86.1114
  6. T. W. Ebbesen, H. J. Lezaec, H. F. Ghaemi, T. Thio, and P. A. Wolf, 'Extraordinary optical transmission through sub-wavelength hole arrays,' Nature, vol. 391, pp. 667-669, 1998 https://doi.org/10.1038/35570
  7. J. Provine, J. Skinner, and D. A. Horsley, 'Subwavelength metal grating tunable filter,' IEEE MEMS 2006, Istanbul, Turkey, pp. 854-857, Jan. 22-26, 2006 https://doi.org/10.1109/MEMSYS.2006.1627934
  8. H. B. Chan, Z. Marcet, D. Carr, J. E. Bower, R. Cirelli, E. Ferry, F. P. Klemens, J. F. Miner, C. S. Pai, and J. A. Taylor, 'Transmission enhancement in an array of subwavelength slits in aluminum due to surface plasmon resonances,' Bell Labs Technical Journal, vol. 10, issue 3, pp. 143-150, 2005 https://doi.org/10.1002/bltj.20109
  9. J. Olkkonen, K. Kataja, and D. G. Howe, 'Light transmission through a high index dielectric-filled sub-wavelength hole in a metal film,' Opt. Express, vol. 13, no. 18, pp. 6980-6989, 2005 https://doi.org/10.1364/OPEX.13.006980
  10. J. Olkkonen, K. Kataja, and D. G. Howe, 'Light transmission through a high index dielectric hole in a metal film surrounded by surface corrugations,' Opt. Express 14, 11506-11511, 2006 https://doi.org/10.1364/OE.14.011506
  11. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, 'Optical properties of the metals, Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared,' Appl. Opt., vol. 22, no. 7, pp. 1099-1119, 1983 https://doi.org/10.1364/AO.22.001099
  12. A. Krishnan, T. Thia, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, 'Evanescently coupled resonance in surface plasmon enhanced transmission,' Opt. Commun., vol. 200, pp. 1-7, 2001 https://doi.org/10.1016/S0030-4018(01)01558-9
  13. F. J. Garcia-Vidal and L. Martin-Moreno, 'Transmission and focusing of light in one-dimensional periodically nanostructured metals,' Phys. Rev. B, vol. 66, issue 15, pp. 155412-155422, 2002 https://doi.org/10.1103/PhysRevB.66.155412
  14. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, 'Transmission resonances on metallic gratings with very narrow slits,' Phys. Rev. Lett., vol. 83, no. 14, pp. 2845-2848, 1999 https://doi.org/10.1103/PhysRevLett.83.2845