DOI QR코드

DOI QR Code

Effect of Substrata Surface Energy on Light Scattering of a Low Loss Mirror

기판의 표면에너지가 반사경의 산란에 미치는 영향

  • Lee, Beom-Sik (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Yu, Yeon-Serk (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Lee, Jae-Cheul (Center for photonics, Institute for Advance Engineering) ;
  • Hur, Deog-Jae (Center for photonics, Institute for Advance Engineering) ;
  • Cho, Hyun-Ju (Department of Firearms & Optics/Daeduk college)
  • 이범식 (청주대학교 레이저 광정보공학과) ;
  • 유연석 (청주대학교 레이저 광정보공학과) ;
  • 이재철 (고등기술연구원 포토닉스센터) ;
  • 허덕재 (고등기술연구원 포토닉스센터) ;
  • 조현주 (대덕대학 총포광학과)
  • Published : 2007.12.25

Abstract

Ultra-low loss ZERODUR and fused silica mirrors were manufactured and their light scattering characteristics were investigated. For this purpose, ZERODUR and fused silica substrates were super-polished by the bowl feed method. The surface roughness were 0.292 ${\AA}$ and 0.326 ${\AA}$ in rms for ZERODUR and fused silica, respectively. To obtain the high reflectivity, 22 thin film layers of $SiO_2$ and $Ta_2O_5$ were deposited by Ion Beam Sputtering. The measured light scattering of ZERODUR and fused silica mirror were 30.9 ppm and 4.6 ppm, respectively. This shows that the substrate surface roughness is not the only parameter which determines the light scattering of the mirror. In order to investigate the mechanism for additional light scattering of the ZERODUR mirror, the surface roughness of the mirror was measured by AFM and was found to be 2.3 times higher than that of the fused silica mirror. It is believed that there is some mismatch at the interface between the substrate and the first thin film layer which leads to the increased mirror surface roughness. To clarify this, the contact angle measurements were performed by SEO 300A, based on the Giriflaco-Good-Fowkes-Young method. The fused silica substrates with 0.46 ${\AA}$ in its physical surface roughness shows lower contact angle than that of the ZERODUR substrate with 0.31 ${\AA}$. This indicates that the thin film surface roughness is determined by not only its surface roughness but also the surface energy of the substrate, which depends on the chemical composition or crystalline orientation of the materials. The surface energy of each substrate was calculated from a contact angle measurement, and it shows that the higher the surface energy of the substrate, the better the surface roughness of the thin film.

ZERODUR와 용융 석영으로 저산란 반사경을 제작하고 산란 특성을 연구하였다. Bowl feed 법을 이용하여 초연마면인 표면거칠기 0.326 ${\AA}$인 용융 석영 기판과 표면거칠기 0.292 ${\AA}$의 ZERODUR 기판을 얻었다. 이온빔 스퍼터링 방법으로 초연마된 기판 위에 $SiO_2$$Ta_2O_5$를 교번으로 22층을 증착하여 다층박막 고반사 거울을 얻었다. 용융 석영 반사경과 ZERODUR 반사경의 산란이 각각 4.6 ppm과 30.9 ppm으로 측정되었으며, 이로부터 산란이 매우 작은 경우 기판의 표면거칠기가 산란을 결정하는 주요 파라미터가 아니라는 것을 알았다. 나아가 반사경의 표면거칠기를 AFM으로 측정한 결과. ZERODUR 반사경이 용융 석영 반사경 보다 박막의 표면거칠기가 2.3배 더 높게 측정 되었다. 이 결과는 기판-박막 경계면에서 박막 형성 초기에 기판의 화학조성 또는 결정방향과 증착물질의 상호관계로 인하여 박막 형성 초기에 표면거칠기가 급격히 나빠져서 발생하는 것으로 유추되었다. SEO 300A으로 접촉각 측정을 하여 Giriflaco-Good-Fowkees-Young 방법으로 표면에너지를 계산하였다. 표면거칠기 0.46 ${\AA}$을 갖는 용융 석영 기판이 표면거칠기 0.31 ${\AA}$을 갖는 ZERODUR 기판보다 접촉각이 더 작고 표면에너지는 크게 나타났다. 이러한 차이가 기판 종류에 따라 박막형성 초기에 표면거칠기를 다르게 하는 한 요인으로 판단되며, 기판의 표면에너지가 높을수록 미려한 박막표면을 얻는 것으로 확인되었다. ZERODUR의 표면에너지 차이를 설명하기 위해 XPS 분석으로 용융 석영은 Si, O로 구성되었고 ZERODUR는 Si, O, Al, Na 그리고 F로 구성되었다는 것을 알 수 있었다.

Keywords

References

  1. N. F. Aronowitz, 'Fundamentals of the Ring Laser Gyro,' Optical Gyros and their Applications (RTO AGARDograph 339, 1999) chap. 3
  2. N. F. Aronowitz, 'The Laser Gyro,' in Laser Application: Vol. 1 (Academic press, 1971), pp. 133-200
  3. M. Davidsion, K. Kaufinan. I. Mazor, and F. Cohen, 'An Application of Interference Microscopy to Integrated Circuit Inspection and Metrology,' Proc. Soc. Photo-Opt. Instrum. Eng. vol. 775, 1987
  4. C. Amra, C. Grezes-Besset, and L. Bruel, 'Comparison of surface and bulk scattering in optical multilayers,' Appl. Opt., vol. 32, pp. 5492-5503, 1993 https://doi.org/10.1364/AO.32.005492
  5. A. Duparre and S. Kassam, 'Relation between light scattering and the microstructure of optical thin films,' Appl. Opt., vol. 32, pp. 5475-5480, 1993 https://doi.org/10.1364/AO.32.005475
  6. J. C. Stover, Optical scattering: Measurement and Analysis, (SPIE, optical Engineering Press, Washington, 1995), chapter 4
  7. Kenneth D. Skeldon, James Mackintosh, Marc von Gradowski, Sophie Thieux, and Richard Lee, 'Qualification of supermirrors for ring-laser-gyros based on surface roughness and scatter measurements,' J. Opt. A: Pure Appl. Opt., vol. 3, pp. 183-187, 2001 https://doi.org/10.1088/1464-4258/3/3/305
  8. Johannes van Wingerden, Has Jan Frankena, and Bertram A. van der Zwan, 'Production and measurement of super-polished surfaces,' Opt. Eng., vol 31, pp. 1086-1092, 1992 https://doi.org/10.1117/12.56151
  9. 조민식, 심규민, 권용률, 정태호, 오문수, 이수상, 조현주, 손승현, 문건, 이재철. '저산란 반사경을 이용한 링레이저 자이로의 주파수 잠김 개선,' 한국광학회지, 제 13권, pp. 336-339, 2002
  10. Hyun-Ju Cho, Myung-Jin Shin, and Jae-Cheul Lee 'Effects of substrate and deposition method onto the mirror scattering,' Appl. Opt., vol. 45, pp. 1440-1446, 2006 https://doi.org/10.1364/AO.45.001440
  11. S. V. Dijken, L. C. Jorritsma, and B. Poelsema, 'Steering-Enhanced Roughening during Metal Deposition at Grazing Incidence,' Phys. Rev. Lett., vol 82, pp. 4038-4041, 1999 https://doi.org/10.1103/PhysRevLett.82.4038
  12. J. Yu, J. G. Amar, and A. Bogicevic, 'Fitst-principles calculations of steering forces in epitaxial growth,' Phys. Rev. B, vol. 69, pp. 113406, 2004 https://doi.org/10.1103/PhysRevB.69.113406
  13. F. M. Fowkes, 'Attractive Forces at Interfaces,' Industrial and Engineering Chemistry, vol. 56, pp. 40-52, 1964 https://doi.org/10.1021/ie50660a008
  14. R. E. Johnson, R. H. Dettre, Wettability, edited by J. C. Berg (Marcel Dekker Inc., New York, 1993), pp. 2-73