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요    약

이 논문은 혼잡현상을 갖는 교통체계의 사회비용함수를 사회비용 최소화문제로부터 도출하여 분석하였다. 이 논문은 이 분야의 기존 연구에서 

다루지 않았던 다음의 두 가지를 중점적으로 분석하였다. 하나는 이용자들의 시간가치가 다를 경우에 비용함수의 구조가 어떻게 달라지는지를 검토하는 

것이고, 다른 하나는 사회비용함수를 구성하는 공급자 비용함수의 구조를 파악하는 것이었다.

분석의 결과는 다음과 같이 요약될 수 있다. 첫째, 한계사회비용은 특정한 시간가치를 가진 고객이 소비한 시간가치비용과 추가 고객의 처리에 

수반되는 시스템 전체의 서비스시간 증가에 따른 한계혼잡비용으로 구성된다. 둘째, 한계혼잡비용은 공급자의 보상한계비용과 같은 바, 후자는 

공급자가 추가의 고객을 가장 경제적으로 처리함에 필요한 용량의 변경에 의한 서비스시간의 변화 양에 대한 이용자 전체의 시간가치를보상해준다는 

전제아래서의 공급자 한계비용을 지칭한다. 셋째, 보상한계비용은 서비스시간함수가 산출과 용량에 대해 동차함수일 경우 한계용량비용에 시스템 

이용률의 역수를 곱한 값과 같다.

This paper analyzed the social cost function of a congestion-prone service system, which is developed from the social 

cost minimization problem. The analysis focused on the following two issues that have not been explicitly explored in 

the previous studies: the effect of the heterogeneity of value-of-travel-times among customers on the structure of cost 

functions; and the structure of the supplier cost function constituting the social cost function. 

The analysis gave a number of findings that could be summarized as follows. First, the social marginal cost for one 

unit increase in system output having a certain value-of-travel-time is the sum of the service time cost for that value-of 

-travel-time and the marginal congestion cost for the average value-of-service-time of all the system outputs. Second, 

the marginal congestion cost equals the marginal supplier cost of system output under the condition that supplier compensates 

the customers for the changed service time costs which is incurred by the marginal capacity increase necessary for economically 

facilitating an additional system output. Third, the compensated marginal cost is the multiple of the marginal capacity 

cost and the inverse of system utilization ratio, if the service time function is homogeneous of degree zero in its inputs.
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Ⅰ. Introduction

Congestion pricing is a special kind of marginal 

cost pricing, which deals with the public service 

exhibits congestion causing economic losses to its 

customers, due to the limited service capacity. 

Congestion pricing estimates the optimal pricing 

and investment rule for the congestion‐prone 

public services. The existing studies for congestion 

pricing have mainly targeted highways being the 

typical public service systems having congestion 

phenomena. Recently the application of this pricing 

is extended to the other types of congestion‐prone 

transportation systems which have the service time 

function different from that of highways in Moon 

and Park (2002b). 

However all the previous studies for congestion 

pricing has a serious shortcoming in that its pricing 

rule does not carry any specific information about 

the supplier costs. The optimal price under congestion 

pricing is expressed by the multiple of the following 

three factors: value‐of‐service‐time (or value-of- 

travel-time); system output; and partial derivative 

of service time function with respective to system 

output. However this well known formula estimating 

the optimal price has no explicit linkage with the 

supplier cost, which might be a more important 

concern of the supplier.

Another shortcoming is the specification of the 

value-of-service-time in the pricing rule. This term 

in the existing studies is developed from the social 

welfare maximization problem constructed under 

the assumption that all the users have the identical 

value-of-service-time which implicitly refers to the 

average of value-of-service-times. However no 

attempt has been made to explicitly validate such 

a specification can be applicable to the case when the 

congestion-prone transportation system facilitates 

users with value-of-service-time heterogeneous one 

another.

The optimal price under congestion pricing 

equates the total cost experienced by each user to 

the social marginal cost. Therefore one simple way 

to identify the relationship between the optimal 

price and the supplier cost could be to analyze the 

social cost function developed from the social cost 

minimization problem of congestion-prone service 

system. Such an approach is similar to that which 

develops the cost function of the neoclassical firm 

from the cost minimization problem. However the 

detail of the former is significantly different from 

the latter.  

Specifically, the congestion-prone transportation 

system considered in this study is a synonym to 

a queuing system which facilitates the random 

arrivals of customers. The queuing system with a 

given capacity can facilitate customers up to the 

level such that the mean arrival rate of demands, 

called the system output, does not exceed the 

capacity determining the upper limit of system 

outputs yielded. Also the queuing system generally 

exhibits the average service time per customer, 

which is monotonically increasing in the mean 

arrival rate of customers, and monotonically 

decreasing in the capacity of the system.

Therefore it is certain that the queuing system 

has the cost structure different from that of the 

neoclassical production system. The cost function 

of the neoclassical firm estimates the cost for the 

independent variable of final outputs. Also the cost 

function of the firm can readily be developed from 

the cost minimization problem which is the dual 

to the profit maximization problem of the 

neoclassical firm. The application of such an 

approach to the queuing system calls for the use 

of the cost minimization problem which has to 

accommodate the service process, and therefore 

gives the cost function different from that of the 

neoclassical firm.

The objective of this paper is to develop the social 

and supplier cost function of a congestion-prone 

transportation system with respect to system 

output. The cost function is developed from the 

social cost minimization problem under the 
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assumption that the transportation system 

facilitates the random arrivals of demands. Also 

the consumers of the transportation system are 

assumed to have the value-of-travel-time different 

one another.

The social cost minimization problem of the 

queuing system is expressed by the non-linear 

programming problem with constraints, as will be 

shown in Section 2. The minimization problem is 

used to find the capacity and its inputs, which 

minimizes the total social cost incurred in 

facilitating a given system output. The choice of 

inputs to capacity has to satisfy the constraint for 

the production possibility range of capacity with 

respect to its inputs available in markets; whereas, 

the choice of capacity has to comprehend its effect 

on the service time being the function of capacity 

and system output. Also the total social cost is 

expressed by the sum of the supplier cost for the 

inputs to the capacity and the user cost for the 

service time of the queuing system. 

Subsequently, in Section 3, the various cost 

functions for the independent variable of system 

output are developed from the social cost 

minimization problem. Such a cost analysis puts 

emphasis on estimating the marginal social and 

supplier cost functions for each system output 

endowed with its peculiar value-of-service-time. 

The marginal social cost is developed in the manner 

analogous to that which estimates the cost in the 

previous studies for the case when all the customers 

have the identical value-of-service-time. Also the 

marginal supplier cost is developed from the social 

cost minimization problem in a fashion similar to 

that which estimates the marginal social cost.  

It is followed in Section 4 by the analysis to 

illustrate the structure of the social and supplier 

marginal cost functions with the two specific 

examples of service time functions. One example 

illustrates the various cost functions of the 

congestion-prone transportation system which has 

the service time function being homogeneous of 

degree zero in capacity and system output. Another 

example analyzes the various cost functions of the 

scheduled transportation service which has the 

non-homogeneous service time function. The final 

section offers the summary and concluding remarks.

Ⅱ. Social Cost Minimization Problem

1. Service time function 

The service time function of a queuing system 

has the functional structure that estimates the 

service time being sensitive to capacity and system 

output. The service time function is supposed to 

estimate the expected value of the service time from 

its commencement to its completion, which is com- 

monto every customer of the queuing system. The 

service time is the sum of the net service time and 

the delay time due to the congestion. 

The service time function of a queuing system 

depends upon the characteristics of the service 

procedure, termed the service technology, such as 

service priority, number of service channels, etc. 

The service time function is generally increasing 

in the mean arrival rate; that is, the net service 

time is usually constant irrespective of the mean 

arrival rate, but the delay time exhibits such a 

property. The delay time is taken place, even in 

the case when the mean arrival rate is smaller the 

capacity, due to the randomness of the service time 

and the time gaps between arrivals. 

There are many queuing systems analyzed in 

the available literature of queuing theory dealing 

with the estimation of the expected service time 

or the expected value of queue. However, only a 

few queuing systems can have the closed-form 

solutions of the expected service time. Nonetheless, 

it can be confirmed that every queuing system 

shares the common property that the service time 

is increasing in the mean arrival rate, but 

decreasing in the capacity. Based on such findings 
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of the previous studies, we postulate the service 

time function of various queuing systems below. 

Assumption 1: The service time function of a 

transportation system, denoted by T , has the 

following structure.   

(1) The system, which facilitates customers on 

the first-in-first-out basis, has the service time 

function homogeneous of degree zero in system 

output during the analysis period, denoted by , 

capacity during the same period, expressed by , 

such that 

    

where  is the expected service time per customer, 

 is the net service time, and   the delay time 

function.

(2) The system, which serves customers with 

the vehicles operated under a schedule controllable 

by the supplier, has the non-homogeneous service 

time function such that 

    

 
  



where  
 and  

 are delay time functions 

homogeneous of degree zero,  the service frequency 

of the systemanalyzed, and  is the total service 

frequency being the sum of the frequencies of all 

the suppliers in competitions, including the system 

being the target of the analysis.

(3) The functions  ,  
 and  

 are positive, 

convex and differentiable in  and . They are also 

monotonically increasing in , but monotonically 

decreasing in . 

Prior to the main discussion, we explain the 

difference between   and  , in asso ci- 

ation with the expression of service time functions 

in the forthcoming discussion. The service time 

function   is the expression specific to the 

homogeneous function only. By the same token, 

the delay time function   is used in order 

to clarify that the delay time function is 

homogeneous. On the other hand, the function 

  is an inclusive expression of all kinds of 

service time functions. This expression is used when 

it is not necessary to make a distinction whether 

it is homogenous or not.   

The key feature of the conditions in Assumption 

1 is that the delay time function   is homogeneous 

of degree zero. This function satisfies the condition 

such that 

       


 





(1) 

where  is a positive constant. This condition i- 

mplies that the delay time depends only upon the 

system utilization ratio, estimated by s/c, 

irrespective of system output and capacity. Number 

of examples satisfying this condition is presented 

below.

A large group of transportation systems 

facilitates the steady flow of demands on the 

first-in-first-out basis introduced in Assumption 

1(1). This group has the service time function which 

usually satisfies the degree-zero homogeneity1). 

One approximation of such service time functions, 

which is widely applied to this group, is

   


(2)

where 0 <  < 1 is a parameter characterizing the 

queuing systems2). This formula for the case of =1 

becomes the exact solution to the queuing system 

1) The examples of service time function for the first-in-first-out queuing systems are available in many literatures dealing 

with stochastic process and queuing theory, such as Cinlar (1975).  

2) The approximation formula is called the Davidson formula available in many books dealing with transportation planning 

such as Manheim (1980).  
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<Figure 1> Configuration of homogeneous service 

time function

with a single channel. Also the formula has a smaller 

value of  as the system with a larger number of 

channels3). The configurationof the formula 

isillustrated in <Figure 1>.

The transportation system, which facilitates the 

peaking demand on the first-in-first-out basis, 

should have the service time function that can 

estimate the service time for the mean flow rate 

exceeding the capacity at the peak period. Such 

a service time function can be estimated either by 

the empirical study or by the approximation metho

d4) One example of the empirical study is the 

highway service time function such that 

    
 


, (3)

where 4.0≤α≤6.0 (Highway Capacity Manual, 

1999). 

Subsequently, the service time function of 

scheduled transportation services considered in 

Assumption 1(2) generally does not have the 

closed-form solution5). One possible approximation 

of the service time function could be the expression 

of  in the assumption. The first part 

   
  estimates the mean waiting time 

before finding the seat available. The second part 

 
 represents the delay time experienced at 

terminal and/or vehicle. 

One simple example of such an approximation 

is the service time function of urban public transit 

which offers the service in a monopolistic position, 

such that

   
 

   (4)

where and  is the seat capacity per vehicle being 

a constant. Here the term  estimates the mean 

waiting time under the condition that the passenger 

can board the first vehicle that arrives, and the 

remaining term in the parenthesis represents the 

waiting time caused by not boarding the full vehicles6). 

2. Specification of social cost minimization 

problem

Here we present the specification for the social 

cost minimization problem of a queuing system 

facilitating the steady flow of random arrivals. The 

social cost minimization problem has the structure 

almost identical to that of the problems considered 

in the previous studies, which analyze the social 

cost of highway services under the assumption that 

3) The fact that  has a smaller value, as the number of service channel increases implies that  is a function 

decreasing in capacity. However, the specification that  is a decreasing function in the capacity results in 

the non-homogeneous service time function. 
4) One approximation formula is 

  ≅ 
  

 

 

 





,
where  

 is the delay caused by the queue at the moment when the peaking period starts, and   is the ratio of the peak period 

to the total analysis period. This equation is estimated by reorganizing the delay time function for the approximation model 

of the queuing systemserving the peaking demand in Parzen (1962).   

5) The queue length of this queuing system is estimated in Boudreau, Griffin, and Mark Kac (1962). Note that the 

estimated queue length is not a closed-form solution.  

6) This approximation formula is available in many books dealing with transportation planning such as Manheim (1980).
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the mean flow rate is constant throughout the 

analysis period. However the former has one 

distinct difference from the latter in that the value- 

of-service-time differs by customers demanding the 

service.

The queuing system being the target of the social 

cost analysis is supposed to facilitates the given 

system output, expressed by a vector   … , 
where  is the demand of consumer ∈   for 

the service. It is assumed that the value-of- 

service-time perceived by consumer  is a 

deterministic term . It is also assumed that this 

system output  forms the steady flow of random 

arrivals to the service system with a mean rate 

 estimated by 
.   

The supplier of the congestion-prone service is 

supposed to minimize the total social cost which 

is the sum of supplier and user costs. The supplier 

cost estimates the cost of inputs necessary for the 

construction of an arbitrary capacity; whereas, the 

user cost is the value of service times incurred in 

facilitating the system output . The supplier is 

also supposed to have two different kinds of choice 

variables the capacity and its inputs. Such a social 

cost minimization problem of the supplier is 

specified below.

Assumption 2: The transportation system, which 

facilitates the given system output  of random 

arrivals forming the steady flow, satisfies the 

following conditions.

(1) The expected service time per random arrival, 

denoted by , is a function of the aggregated system 

output  
, and is identical across all the 

arrivals. This expected service time and is 

estimated by 

  .

For this expected service time, the user cost is  

User Cost=


      ,

where  is the average value-of-service-time 

estimated by 
   .

(2) The production of capacity  satisfies the 

condition such that  

≤ 

where  …   is the vector of inputted 

goods and services , and  is the production 

function which is increasing and differentiable 

in . This production incurs the cost to the 

supplier, estimated by

Supplier Cost= 


 ,

where  is the price of input .

The social cost minimization problem specified 

above that the variable cost of supplier for system 

output is zero. That is, the supplier cost defined in 

the assumption consists only of the capacity cost 

which estimates the cost of inputs consumed in 

constructing the certain capacity of the queuing 

system. This assumption neglects that most of 

transportation services spend the variable cost 

constituting the large portion of the total supplier 

costs. Such an unrealistic assumption is adopted only 

to simplify the expression associated with the 

inclusion of the variable cost, which does not cause 

any basic change in the forthcoming analysis to 

estimate the various types of social and supplier costs.  

Finally, Assumption 2 does not specify the 

functional form of the production technology, 

expressed by the function . The production function 

 can be either a convex function or a concave 

function, each of which leads to the different returns- 

to-scale of the congestion-prone transportation 

system in capacity. Also the reason why not to 

specify the returns-to-scale of the production 

function is that the forthcoming cost analysis is 

free from the returns-to-scale. 
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3. Optimality conditions for social cost minimization 

problem 

Under Assumptions 1 and 2, the social cost 

minimization problem of a congestion-prone 

transportation system can be expressed by the 

Lagrangian, denoted by  , such that

        


(5)

where  and  are Lagrange coefficients. 

Arranging the Kuhn-Tucker conditions for the 

problem   gives the optimal investment rule 

presented below.

Proposition 1: The optimum solution to the 

problem   for the independent variable of , 

denoted by       , satisfies the following 

two conditions.

(1) One is the investment rule for the inputs 

to system capacity, such that

   ≡
   

  

  
∀ , 

where  is the marginal capacity cost estimating 

the marginal increase in the social cost for one unit 

increase in . Here the terms  and  are the 

abbreviations of functions  and    

respectively, and estimates the optimal value of 

 and  for an arbitrary , respectively.

(2) The other one is the investment rule for 

capacity, such that 

      
  

Proof. (1) The equality that    follows 

from the fact that  equals the marginal supplier 

cost for the increase in one unit of . The second 

equality is none other than the first order conditions 

for   with respect to . 

(2) Substituting the first order condition of   

with respect to  into the first order condition with 

respect to  gives the investment rule in Proposition 

1(2). Q.E.D.

Proposition 1 introduces the two investment 

rules which are sufficient to determineall the 

unknowns in the social cost minimization problem. 

These two conditions are identical to the optimality 

conditions for the two sub-optimization problems 

of the original optimization problem in Eq. (5). 

Using these two sub-optimization problems, the 

economic implications of the two optimality 

conditions are considered below.

The first sub-optimization problem is the cost 

minimization problem to find the optimum solution 

of inputs  necessary for the production of an 

arbitrary capacity . This optimization problem, 

denoted by ,  is 

     (6)

This sub-optimization problem has the first order 

condition with respect to , which is identical to 

the optimality condition in Proposition 1(1).

The value of the Lagrangian  for the optimum 

solution, expressed by    , estimates the 

minimum supplier cost necessary for constructing 

a certain capacity . Hence the capacity cost 

function, denoted by  , is 

       



 
  (7)

where  and  are functions estimating the optimum 

solutions of  and  for a given capacity , 

respectively. 

Substituting the above capacity cost function 

into Eq. (5) gives the second sub-optimization 

problem, denoted by , such that
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         
 

 
(8)

This minimization problem   has the first order 

conditions with respect to  and , which are identical 

to the conditions for the original problem  . Hence, 

the optimum solution of    to the problem   is 

identical to the solution to the problem  .

The fact that social cost minimization problems  

  and   have the identical optimum solution of 

 implies the following:

     (9)

Here the function  estimates the solution of  

to the Lagrangian   for variable . On the other 

hand, the function  estimates the solution of  

to the Lagrangian  for variable . Also the term 

  is the optimal capacity of the problem  , which 

is identical to the solution of  to the problem  .  

Ⅲ. Marginal Cost Of System Output

1. Social marginal cost function: Uniform value- 

of-service-times 

The social marginal cost of system outputs refers 

to the additional minimum social cost necessary for 

increasing one additional system output. Thissocial 

marginal cost can be estimated from the social cost 

minimization problem specified in Assumption 2. 

Such an analysis to estimate the social marginal 

cost is illustrated with a simplified version of the 

social cost minimization problem below.  

Suppose that the all the random arrivals to a 

transportation system have the identical value-of- 

service-time, denoted by . Reflecting this assumption 

to the social cost minimization problem  gives the 

amended version, denoted by  , such that 

           
          

(10)

For this minimization problem, the total social cost 

function, denoted by , is

         (11)

Here, the term  is the function estimating the optimal 

value of for the varying value of , and the other terms 

with a bar has the same property with .

Hence the social marginal cost function, denoted 

by , is estimated by 

 


       
(12)

This definition of  gives   

 

     

 
(13)

where     is an abbreviation of    
    

 in 

which  is a constant being equal to  .

To prove Eq. (13), we first develop the alternative 

expressions of  and  from the Kuhn-Tucker 

conditions for the Lagrangian  , such that

 

   
, ∀ ,  

   , and  

(14)

Subsequently, i) differentiating          with 

respect to , ii) replacing the Lagrange coefficients 

in the result of the previous step with the alternative 

expressions in Eq. (14), and iii) simplifying the result 

of the second step leads to Eq. (13)

The function  in Eq. (13) estimates the 

additional increase in the total social cost for an 

increase in system outputs from  to +1. This 

function is composed of two terms. Those two terms 

in common estimate the effect of the marginal increase 
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in system outputs on the user cost at the optimal 

capacity, but reflect the different kinds of the effects.

The first term     is called the marginal 

user cost, and is denoted by 

    .  (15)

The function  estimates the social marginal 

cost of the service system, under the assumption 

that the facilitation of the additional output would 

not change the service time. The function  is 

the product of the value-of-service-time  and the 

expected service time    , both of which are 

common to all the system outputs. This estimate 

of the marginal user cost equals the average user 

cost which is the average time cost per user.

The second term     is called the mar- 

ginal congestion cost, and is expressed by

 
   

 (16)

The function  represents the additional social 

cost for the marginal increase in service time 

estimated by    . The facilitation of an 

additional system output increases the service time 

of the existing consumers as well as the additional 

consumer by the margin     which is 

common to all the demands. Therefore the social 

marginal cost for this effect is estimated by 

multiplying     to . 

2. Social marginal cost function: Heterogeneous 

value-of-service-times

In the above, we estimated the social marginal 

cost function of system output under a restrictive 

assumption that all the random arrivals have the 

identical value-of-service-time. However, in reality, 

the congestion-prone service systemof a service 

option usually facilitates its consumers who have 

value-of-service-times different one another, as 

specified in Assumption 2. We therefore extend the 

previous analysis for the special case to a more 

realistic case specified in Assumption 2. 

The optimum solution of (  ) to   can be 

expressed by the function of aggregated system 

output   
, instead of    …  , as in the 

case of  . Hence the function  for the case 

of   can be expressed by

          (17)

Differentiating        with respect to 

gives the social marginal cost specific to consumer 

, as shown below. 

Proposition 2: The social marginal cost specific 

to consumer who has the value-of-service-time , 

denoted by   , has the expression such that

   




       

where

     , and    
  

.

Proof. Differentiating   with respect to , and 

arranging the result of the previous step a manner 

analogous to that which led to Eq. (14) gives the 

above expression of   .  Q.E.D.

The function    estimates the marginal social 

cost increase incurred in the process to facilitate one 

more unit of system output having the value-of- 

service-time . The function    has the 

expression identical to that of the special case in Eq. 

(13), except for differences associated with the 

heterogeneous value-of-service-times among customers. 

Focusing on the difference between them, we examine 

the economic implications of    below.  
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The first term      represents the marginal 

user cost for the demand of customer  who has 

the value-of-service-time  . This marginal user 

cost estimates the additional user cost incurred in 

facilitating one more unit of system outputs 

demanded by customer , under the assumption 

that the facilitation of the marginal output would 

not change the service time. This social marginal 

cost      equals the multiple of the 

value-of-service-time   specific to consumer  and 

the expected service time     common to all the 

system outputs.

The second term     is the marginal 

congestion cost for the demand of consumer . This 

marginal cost estimates the additional social cost 

which estimates the value of the marginal service 

time increase by one unit increase in the demand 

of consumer . This marginal congestion cost is 

identical, irrespective of the value-of-service-time 

of marginal system outputs. This result is the 

consequence of the following: the facilitation of an 

additional system output increases the service time 

of the existing consumers as well as the additional 

consumer by the margin     which is 

common to all the demands.

Subsequently, we consider the amended version 

of the cost minimization problem  , such that the 

user cost is expressed by   , instead of 
  . 

This cost minimization problem, denoted by  , is

          
 

 

(18)

This optimization problem has the identical 

structure with the Lagrangian  in Eq. (11), except 

for one difference that the value-of-service-time 

is expressed by the average value . Therefore, 

it is immediate from the previous analysis for the 

Lagrangian   that the Lagrangian   gives the 

social marginal cost introduced below. 

Proposition 3: The social cost minimization 

problem   has the social marginal cost function 

which satisfies the following equality:

  




    ,

where

     and     
   

.

Proof. The above results directly follow from Eq. 

(13).  Q.E.D. 

Proposition 3 shows that the function   

of   equals the arithmetic average of the functions 

    of   for every . Specifically, the function 

  estimated by      is the arithmetic 

average of    estimated by       for all 

the system outputs amounting to  
. On the other 

hand, the function   of the problem  has 

the expression identical with that of problem  .

3. Marginal private cost function

The social cost minimization problem of a queuing 

system, which is specified in Assumption 2, includes 

the supplier cost in its objective function. However, 

the expression of the social cost function in 

Proposition 2 does not carry any tangible 

information about how the social cost function is 

related to the supplier cost. We therefore here 

introduce one way to construct the supplier cost 

functions, and then identify the relationship with 

the marginal capacity cost function. 

Picking up the portion of the supplier cost from 

the total social cost function for the Lagrangian 

  gives the supplier cost function, called the total 

cost function and denoted by , such that
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          


  





  
        

(19)

The function  is identical with the function , 

except for one difference that the former does not 

include the term 


     estimating the user cost. 

It means that, for example, the function  is 

identical to the function estimating the solution 

of to the Lagrangian  .

Differentiating  with respect to system output 

s gives the marginal cost of aggregated system 

output s , called the marginal private cost function 

and denoted by , such that 

  


(20)

This marginal private cost function satisfies the 

relationship with the marginal capacity cost 

function identified below.

Proposition 4: The marginal private cost function 

 satisfies the following equalities:

  
 

   


, ∀ .  

Proof. The first equation is immediate, since 

 
. The second one is developed by arranging 

Eq. (20), as shown in Appendix A.  Q.E.D.

The marginal private cost is equivalent to the 

marginal cost of a neoclassical firm. This marginal 

cost is common to every random arrival, irrespective 

of its value-of-service-time, as shown in the first 

equation of the proposition. The marginal cost has 

the relationship with the marginal capacity cost 

shown in the second equation of the proposition. 

This expression of the marginal private cost 

however does not give any tangible information 

about the marginal congestion cost constituting the 

social marginal cost estimated in Proposition 2. For 

this reason, we search for another version of the 

supplier cost function.  

4. Compensated marginal cost function

Another way to construct the supplier cost 

function is to pick up the portion of the supplier 

cost from the total social cost function, under the 

condition that the service time   is fixed to the 

optimum solution of  to the original social cost 

minimization problem  . This supplier cost 

function, called the compensated total cost function 

and denoted by , can be expressed as follows:

(21)          


    





  
         

  

The function  has the expression identical to 

the function , except for one difference that the 

term   is not a function of  but a constant. Also 

the term ‘compensated’is introduced so as to reflect 

the condition that the service time is fixed. 

Differentiating  with respect to system 

output  gives the marginal cost of system output, 

called the compensated marginal cost function and 

denoted by , such that 

  
 

(22)

This compensated marginal cost function has the 

relationships with the other marginal costs shown below.

Proposition 5: The compensated marginal cost 

function  satisfies the following equalities:

  
 

    ∀
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where  stands for the marginal external cost 

function, defined by 

    
   

  

   
 

   




Proof.  See Appendix B.

The compensated marginal cost function is a kind 

of the marginal supplier cost function. This 

marginal cost of system output is common to every 

random arrival, irrespective of its value-of-service- 

time, as in the case the marginal private cost. The 

compensated marginal cost is equal to the marginal 

congestion cost constituting the marginal supplier 

cost, as shown in the second equation of the 

proposition. Also the compensated marginal cost 

is the sum of the marginal private cost and the 

marginal external cost, estimated by  , and 

this relationship can be interpreted as below.  

The marginal private cost, defined by , 

refers to the marginal supplier cost under the 

condition that supplier can choose the service time 

minimizing the total social cost without constraint. 

Whereas, the marginal external cost, estimated by 

 ,  is the marginal increase in user cost, which 

is triggered by the supplier’s action to adjust the 

capacity in response to the marginal increase in 

system output so as to minimize the total social cost. 

Hence it can be said that the compensated marginal 

cost equals the marginal supplier cost under the 

condition that supplier compensates the customers 

for the change in service time costs, which is incurred 

by the marginal capacity change necessary for 

facilitating an additional system output. 

Proposition 5 shows that the marginal compensated 

cost equals the marginal congestion cost. However, 

the marginal congestion cost estimated in Proposition 

2 is expressed using the service time function which 

has no direct relationship with the supplier cost. 

For this reason, we examine the possibility to 

identify the relationship between the compensated 

marginal cost and the marginal capacity cost.

Proposition 6: The functions  and  

satisfy the following relationship.

(1) In the case of the transportation system with 

the homogeneous service technology defined in 

Assumption 1(1), the relationship is 

  


  .

(2) In the case of the system with non-homogeneous 

service technology defined in Assumption 1(2), the 

relationship becomes

  


    

where 

  
 

 
 
  ,

and   is the value of , in which the capacity 

of the system analyzed is  .

(3) The cost functions   estimated above 

satisfy the second equality of Proposition 5.

Proof.  See Appendix C. 

The above expressions of  in Propositions 

5(1) and 5(2) have the following two advantages. 

First, the functions are expressed using the terms 

all of which are directly observable or statistically 

estimable. Second, the economic implication of the 

expressions is clear. For example, the expression 

for homogeneous service technology shows that the 

compensated marginal cost equals the multiple of 

the marginal capacity cost and the inverse of system 

utilization ratio, estimated by  .  
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5. Long- versus short-run social marginal cost 

functions 

The capacity in the social cost minimization is 

a long-run choice variable. Therefore the function 

 estimates in nature a long-run cost  that 

is, the function estimates the social marginal cost 

of system output under the condition that the 

supplier adjusts the capacity optimally to the 

change in system output. On the hand, the 

short-run social marginal cost function, denoted 

by , estimates the social marginal cost of 

system output under the condition that the capacity 

being a long-run variable is fixed. We examine the 

relationship between  and  with the 

social cost minimization problem for aggregated 

system output   below.

To begin with, we consider the social cost 

minimization problem under the condition that the 

capacity is a fixed term   such that    . 

This short-run social cost minimization problem, 

denoted by  , is  

          (23)

For this cost minimization problem, the function 

    is expressed by

    


      

   

(24)

where 

       , and 

     
  

The function      is composed of two 

terms,      and     . The 

function      estimates the short-run 

marginal user cost of the queuing system with the 

capacity   for varying value of . This function 

is positive and monotonically increasing in , since 

 is monotonically increasing and convex in , as 

specified in Assumption 5.1(3). On the other hand, 

the function      estimates the marginal 

congestion cost of the service system with the 

capacity   for varying value of . This function, 

expressed by    , is also positive and 

monotonically increasing in , since  is mono- 

tonically increasing and convex in .

Subsequently, we consider the relationship 

between the long- and short-run social marginal 

cost functions. By the condition that      , 

it is certain that the long-run social marginal cost 

at system output  , denoted by    , equals 

    : 

        

       


  

(25)

This implies that 

         and

           (26)

The above results show that that the long- and 

short-run social marginal cost functions have the 

identical value at the point      These two 

relationship can be seen in the literature dealing 

with the congestion pricing of highway service, such 

as Wohl (1972) and Moon and Park (2002).

Ⅴ. Specific Examples

1. An example of homogeneous service time 

functions  

The service time function in Eq. (2) is an 
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approximation which could be applicable to most 

of transportation systems offering services on the 

first-in-first-out basis. Using this service time 

function, we here illustrate the procedure to 

estimate the optimal capacity and the various cost 

functions from the social cost minimization problem 

for the aggregated system output in Eq. (18). 

Substituting this service time function in Eq. 

(2) into the social cost minimization problem in 

Eq. (18) gives 

           

   




(27)

For the above minimization problem, the optimality 

investment rule in Proposition 1(2) has the 

expression such that

 

 
  

  (28)

From this investment rule, we develop the specific 

expression of the function to estimate the optimal 

capacity for the varying value of  below.  

Let  denote that  

 

  
(29)

Then Eq. (28) can be rearranged as follows:

  
 .                       (30)

This equation depicts that the optimal capacity   

should be larger then the system output by the 

ratio  .

The formula (30) could be interpreted as follows. 

First, the ratio   becomes smaller as the 

value of   is larger that is, the transportation 

system which has the larger value of   should 

have the optimal capacity larger then the system 

output s  by a smaller margin. Second, the ratio 

  becomes larger as the value of  is larger 

that is, the service system which serves the 

customers having larger value-of-service-time 

should offer the optimal capacity larger than the 

system output by a larger margin. 

Subsequently, we find the specific expressions 

of the various cost functions. By Proposition 3, the 

function  satisfies the following relationship:

    (31)

Also substituting Eq. (30) into the function  

in Proposition 3 gives  

      




  

(32)

Subsequently, it follows from Proposition 5 that 

 is equal to   being a kind the marginal 

supplier cost function. By Proposition 6, the 

function  for homogeneous service time 

function in Eq. (2) satisfies the following 

relationship:

)()( cMKC
s
csCMC =

. (33)

Substituting Eq. (30) into the right side of Eq. 

(33) gives

)()()( cMKCJvcMKCsCMC += . (34) 

This shows that the function  can be expressed 

as the function of   .

Finally, we depict the configurations of 

under the following conditions:    is locally 

convex in , and has a minimum at the point . 

Then it is immediate that    is also convex 
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<Figure 2> Social marginal cost function for 

homogeneous service technology

in , and has the minimum at . Hence it follows 

from Eqs. (32) and (34) that both of   and 

  have such properties. Therefore, it is clear 

that   being the sum of   and   

shares the same properties. Such results are 

schematically illustrated in <Figure 2>. 

<Figure 2> also illustrates the following relationships 

between long- and short-run marginal costs, which 

are depicted in Eqs. (25) and (26). First, the 

functions    and    are 

increasing in system output , as explained 

previously in connection with Eq. (24). Therefore 

the function    is also increasing in . 

Second, the value of    at the point  

is    which equals   , as shown in 

Eq.(26). Third, the value of    at the point 

equals the value of   at that point, as 

claimed in Eq. (25).

2. An example of non-homogeneous service 

time function

The service time function in Eq. (4) could be 

a plausible approximation of the urban public 

transit or shuttle service in a monopolistic position 

on a certain corridor. This service time function 

is not homogeneous of degree zero in its variables 

of  and , due to the presence of the term 1/2. 

For this service time function, we carry out a series 

of analyses in the fashion analogous to the analyses 

for the homogeneous service time function in Eq. 

(2).

For that service time function, the social cost 

minimization problem for the aggregated system 

output can be expressed as follows: 

       

  

   

(35)

Here the delay function   is defined by

ρ
ρ

τ
ττ

−
=

−
=

11
)( J

cs
csJcsT d

(36)

where cs τρ ≡  is the system utilization ratio of the 

transit system considered here. It is also assumed that 

ccKC βα +=)( (37)

where 0≥α , and 0〉β , in order to simplify the 

analysisto figure out the configuration of  . 

For the social cost minimization problem defined 

above, the optimal investment rule in Proposition 

1(2) has the expression such that

( ) 







∂

∂
−+=

c
csT

c
csT

c
sv

d
d )(

2
1)(1

2
1
2

ττβ
(38)

Differentiating the above equation with respect to 

, and estimating sc ∂∂  from the result of the previous 

step gives

10 ≤
∂
∂

〈
s
c

c
s

(39)

as shown in Appendix D. These inequalities implies 

that 

011
≤








∂
∂

−=







∂
∂

=
∂
∂

s
c

c
s

cc
s

ss ττ
ρ

(40)
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<Figure 3> Socialmarginal cost function for 

non-homogeneous service technology

Hence it can be concluded that the system 

utilization ratio )(sρ  is diseasing in  that is, the 

optimal capacity )(sc  approaches to system output 

, as output increases.  

Subsequently, we estimate the specific 

expressions of the various cost functions. By 

Proposition 3, it follows that

)()()( sMCCsMUCcSMC += (41)

Also, by Proposition 6(2), it holds that

ρτ
β

≤= )()( sCMCsMCC
(42)

This implies that that the marginal supplier cost 

  is smaller than the average supplier cost 

of system output, estimated by )(sρτβ . However, 

this inequalityis not sufficient to figure out the 

configuration of  . We therefore carry out 

the two different kinds of analyses. 

The first kind of the analysis to estimate the 

limiting values of  and . Such an analysis 

shows that 

∞=
+→

)(lim
0

sMUC
s , τ

βJsCMC
s

=
+→

)(lim
0 (43)

os
tsMUC =

∞→
)(lim

,  τ
β

ρ
==

∞→∞→
)(1lim)(lim cMKCsCMC

ss

(44)

as proved in Appendix E. The second kind of the 

analysis to estimate the slope of  and . 

Differentiating these two functions with respect to 

 gives

,0)(
〈

∂
∂

s
sMUC

(45)

0)(
〉

∂
∂

s
sCMC

(46)

as shown in Appendix E. Using the above results, 

the configurations of various cost functions are 

depicted in <Figure 3>.In addition, the relationships 

between the long- and short-run marginal costs in 

Eqs. (25) and (26) are also illustrated in the figure. 

Ⅴ. Summary And Concluding Remarks 

This paper analyzed the various marginal cost 

functions of congestion-prone transportation systems, 

all of which are developed from the social cost 

minimization problem. The cost analysis of this paper 

for congestion-prone transportation systems has the 

following peculiar aspects differentiated from that 

of the previous studies. First, the service time 

function of the congestion-prone service system is 

formulated in a generalized format so that the 

analysis can be applicable to as many as possible 

number of congestion-prone systems. Second, the 

social cost minimization problem is constructed 

under the condition that each consumer has a value- 

of-service-time different from the others. Third, the 

relationship between the marginal congestion and 

marginal supplier costs are explored. 

One important finding of the cost analysis is that 

the social marginal cost specific to individual i , 
denoted by    , is expressed by

( ) )(,)( sMCCcsTvsSMC ii += )
, and
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s
csTsvMCC

∂
∂

=
);()(

where  is the demand of consumer , 
i

i ss ∑≡  the 

aggregated system output,   the value-of-service- 

time perceived by consumer , and ssvv ii
i∑=  

the average value-of-service-time of all the 

customers. 

The right side of   is composed of the two 

terms, each of which estimates the different effect 

of the marginal increase in system output on the 

user cost. The first term, called the marginal user 

cost, estimates the social marginal user cost for 

an additional increase in the demand of consumer 

, under the condition that the facilitation of an 

additional system output does not change the 

service time. On the other hand, the second term, 

called the marginal congestion cost, estimates the 

social marginal cost for the service time increase 

caused by the one unit increase in system output, 

under the conditionthat the capacity is not changed. 

Another finding is the relationship between the 

marginal congestion cost and the two different kinds 

of the marginal supplier cost. One kind of the 

marginal supplier cost is the marginal private cost 

of the supplier, denoted by , such that     

s
ccMKCsMPC
∂
∂

= )()(
,

where ccKCcMKC ∂∂= )()(  is the marginal capacity 

cost function estimating the marginal supplier cost 

necessary for increasing one unit of capacity c . 

Another kind of the marginal supplier cost is the 

compensated marginal cost, denoted by , which 

satisfies the following relationship:

s
csTsvsMPCsMCCsCMC

∂
∂

+==
),()()()(
)

.

Here, the last term, called the marginal external 

cost function, estimates the marginal user cost 

increase caused by one unit growth in system output 

under the condition that the supplier adjusts the 

capacity optimally to a marginal increase in system 

output. 

The marginal private cost   is equivalent 

to the marginal cost of the neoclassical firm. The 

expression of   however has a shortcoming in 

that it does not contain any information about 

  introduced previously. On the other hand, 

the compensated marginal cost is the marginal 

supplier cost under the condition that the supplier 

compensates the customers for the change in service 

time costs, which is incurred by the marginal 

capacity increase necessary for facilitating an 

additional system output. The marginal cost 

equals to the marginal congestion cost   

constituting the social marginal cost  .

The other finding is the relationship between  

and . This relationship for the service system 

with homogeneous service technology is

)(
)(

1)( cMKC
s

sCMC
ρ

=
,

where )()( scss ≡ρ  is the optimal system utilization 

ratio. On the other hand, the relationship for the 

scheduled transportation service with non-homo- 

geneous service technology is

( ))()(
)(

1)( sMWTcMKC
s

sCMC −=
ρ .

Here, )(1 sMWT−ρ  is the external benefit for the 

marginal waiting time decrease common to all the 

customers, which is accrued by the marginal 

capacity increase necessary for facilitating one 

more system output. 

Subsequently, the analysis presented in this paper 

can readily be extended to the more generalized cases 

of congestion-prone transportation systems. One 

direction of the extension could be to accommodate 

the system which consumes the variable costs which 
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is usually an increasing function of system output. 

This extension can be approached by simply adding 

the variable cost term to the supplier cost side of 

the social cost minimization problem. Another 

possible direction could be to extend the analysis 

for the single period problem to the multi-period 

problem which covers the congestion-prone 

transportation system serving the peaking 

demand. One way of the extension could be to 

expresses the user and supplier cost of the social 

cost minimization problem in the fashion analogous 

to that of Moon and Park (2002a).

Finally, we consider the utility of the analysis 

presented in this paper. The analysis has the 

significance in that it shows the more detailed 

structure of the various marginal cost functions, 

especially the relationship between the social 

marginal cost function and the compensated 

marginal cost function. Also the analysis can be 

incorporated into the social welfare maximization 

problem that estimates the optimal pricing and 

investment rule of the congestion-prone tran- 

sportation systems operated by the public agency. 
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Appendix A: Proof of Proposition 4 

The total cost function of the supplier, and 

denoted by , is defined as follows

( ) ( )tcsTxFcxpsTC
j

jj −+−+=∑ ),()()( µϕ
(A.1)

Here the optimal values of  and  satisfies the 

following equality:

j
j x

xFp
∂
∂

=
)(ϕ
, j∀ ,  c

csTsv
∂

∂
−=

),(ϕ
, and sv=µ

(A.2)

as shown in Eq. (18) of the text.

Differentiating  with respect to , and 

substituting Eq. (A.2) into the result of the previous 

step gives the marginal private cost function  

such that  

s
x

x
xF

s
c

s
x

psMPC
s
sTC j

jjj

j
j ∂
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−
∂
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∂
∂

∂
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+
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∂
+ ϕµµµ ),(),();(

(A.3)

Substituting (A.2) and Proposition 1(2) sequ- 

entially into (A.3) gives 

s
ccMKC

s
c

c
csTsv

s
c

∂
∂

=
∂
∂

∂
∂

−=
∂
∂ )(),(ϕ

(A.4)

Appendix B: Proof of Proposition 5

(1) Prove first that )()()( sMECsMPCsCMC += . 

The compensated total cost function and denoted 

by , is defined as follows:

( ) ( ) tttcsTxFcxpsCTC
j

jj =−+−+=∑ ),()()( µϕ
(B.1)

Differentiating  with respect to , and 

arranging the result in the manner that led to (A.3) 

gives 

s
c

c
csT

s
csT

s
csCMC

s
sCTC

∂
∂

∂
∂

+
∂

∂
+

∂
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==
∂

∂ ),();()()( µµϕ

s
c

c
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s
csTsMPC

∂
∂

∂
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+
∂

∂
+=

),();()( µµ
(B.2)

Substituting the relationship sv=µ in (A.2) into 

the second and third terms of (B.2) respectively 

gives the term )(sMEC in the proposition. 

(2) Prove next that )()()( sMECsMPCsMCC += . 

Since the function )(sSTC  defined in Eq. (17) has 

an additional term 
ii

i svt∑  than the function )(sTC  

in Eq. (19), it is immediate that

)()()( sMCCsMUCsSMC ii +=

)(),()( sMPC
s
csTsvsMUC i

i

ii +
∂

∂
+= ∑

(B.3)

This equality implies the assertion.

Appendix C: Proof of Proposition 6

(1) By Proposition 5, it follows that 

s
cccsTsvsCMC

∂
=∂

=
);()(

(C.1)

Substituting Eq. (1) and Proposition 1(2) into the 

right side of (C.1) sequentially gives

c
cKC

s
c

c
csTs

s
cvsCMC

∂
∂

=







∂
∂

−=
)()()(

(C.2)

(2) By the homogeneity of  
 and  

, it follows 

that
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s
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(C.3)

Using the above relationship, the optimality 

condition in Proposition 1(2) can be rearranged as 

below:
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(3) Prove first that the function  for the 

homogeneous service technology in Proposition 

6(1) satisfies the relationship in Proposition 5. The 

first term of  in Proposition 5 equals . 

Replacing this function  by the alternative 

expression of  in Proposition 6(1), and 

substituting Proposition 1(2) into the second term 

of  gives

)()( cMKC
s
c

s
csMEC 








∂
∂

−=
(C.5)

Substituting   in Proposition 4 into (C.5), and 

substituting again the result of the previous step 

into Proposition 6(1) gives the equality such that 

is the sum of  and , as claimed in 

Proposition 5. 

Prove next the case of non-homogeneous service 

technology. Substituting Proposition 6(2) into the 

first termof  in Proposition 5, and substituting 

Proposition 1(2) into the second term of  gives

)()()( cMWT
s
ccMKC

s
c

s
csMEC −








∂
∂

−=
(C.6)

Here the term )()( cMWTsc  represents the marginal 

external benefit which estimates the value for the 

waiting time decrease brought by an addition of 

one more service frequency. Substituting 

Proposition 4 into (C.6), and substitutingagain the 

result of the previous step into Proposition 6(2) 

gives the equality in Proposition 5. 

Appendix D: Proof of Eq. (39) 

(1) Outline of the proof: We first estimate sc ∂∂

from the following optimality condition:

( ) 

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where )( csTT dd = . Differentiating (D.1) with 

respect to  yields 
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Estimating sc ∂∂  from (D.2) gives

B
A

s
c
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=
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) (D.3)

where
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(D.5)

By rearranging terms in (A.4) and (A.5), it will 

be shown that 
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(D.6)

(2) Rearrangement of (D.4) and (D.5): Since 

the function  is homogeneous, the last term of 

(D.4) can be rearranged as follows: 
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Subsequently, multiplying   to A in (D.4), and 

substituting (D.1) and (D.7) into the result of the 

previous step gives
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2

222 c
Tsv

c
T

c
sv

s
T

c
svAsv

ddd

∂
∂

+
∂
∂

+
∂
∂

+= β
(D.8)

0
2 2

2

〉
∂
∂

+=
c
Tsv d

β
(D.9)

Note that the (D.8) is simplified into (D.9) using 

the fact that the function   is homogeneous. Finally, 

multiplying   to B in (D.5), and substituting (D.1) 

into the result of the previous step gives

0
2

2 2

2

〉
∂
∂

+=
c
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β
(D.10)

(3) The proof of the inequalities in (D.6): 

Substituting (D.9) and (D.10) into (D.3) gives 
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Since the second term of the numerator and 

denominator is positive, it is clear that 21)( 〈∂∂ sccs . 

On the other hand, when  approaches to , it follows 

that 

∞=
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It will be shown in Appendix E that, when  

approaches to ∞ , the term   also approaches 

to . 

Appendix E: Proof of Eqs. (43)∼(46) 

(1) Proof of Eq. (43): The proof is worked out 

using the special solution to the differential 

equation in (D.1), such that

2121
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(E.1)

Note that this special solution satisfies the equality 

in (D.1) under the condition that  approaches to 

0  from the right.

Using the above special solution, the value of 

)(lim sMUC
s ∞→  is estimated below:
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Finally, the value of 
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(2) Proof of Eq. (44): The proof is worked out 

using the special solution to the differential 

equation in (D.1), such that
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Note that this special solution satisfies the equality 

in (D.1) under the condition that s  approaches 

to ∞ .

Using the above special solution, the value of 

)(lim sMUC
s ∞→  is estimated below:
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On the other hand, the value of )(lim sCMC
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(3) Proof of Eq.(45): It is obvious from (E.2) 

and (E.5) that )(sMUC  is decreasing in . However, 

it appears to difficult to prove this assertion by 

evaluating the sign of ssMUC ∂∂ )( , as shown below:
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The above result does not provide concrete 

information about the sign of ssMUC ∂∂ )( . 

Specifically, the first term of (E.7) is positive; 

whereas, the second is negative. In contrast, the 

first term of (E.8) is negative; whereas, the second 

term is positive. Therefore it is difficult to find 

clear-cut information about the sign from the above 

results.

Nonetheless, we can infer from the above 

expressions information necessary for figuring out 

the configuration of )(sMUC , which is depicted 

in <Figure 3>. First, if has the value near to zero, 

the absolute value of the first term of (E.8) is 

significantly smaller than that of the second term 

being infinitely large. That is, the sign is negative 

when  is small. Second, it is certain that the 

absolute value of the first term of (E.7) approaches 

to the absolute value of the second term, as  grows 

to infinite. That is, the value of ssMUC ∂∂ )(  

approaches to zero, as  grows to infinite.

(4) Proof of Eq. (46):
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 by (D.6). 
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