DOI QR코드

DOI QR Code

Chemical Characteristics of Ground Water for Hydroponics and Waste Nutrient Solution after Hydroponics in Chungbuk Area

충북지역 양액 재배용 지하수 및 폐양액의 화학적 특징

  • Lee, Gyeong-Ja (Chungbuk Agricultural Research and Extension Services) ;
  • Kang, Bo-Goo (Chungbuk Agricultural Research and Extension Services) ;
  • Lee, Ki-Yeol (Chungbuk Agricultural Research and Extension Services) ;
  • Yun, Tae (Chungbuk Agricultural Research and Extension Services) ;
  • Park, Seong-Gyu (Chungbuk Agricultural Research and Extension Services) ;
  • Lee, Cheol-Hee (Chungbuk Agricultural Research and Extension Services)
  • Published : 2007.03.27

Abstract

This survey has been conducted to obtain basic data of the quality of ground water for hydroponics and waste nutrient solution after hydroponics in hydroponic farms in Chungbuk area. Ground water samples were collected and analyzed at 19 sites of hydroponic farms. Waste nutrient solution samples were analyzed at 15 sites selected of them. The values of several components in ground water for hydroponics were as follows. pH range was shown from 6.2 to 7.7 and the average was 6.8. EC range was shown from 0.10 to 0.45 dS $m^{-1}$ and the average 0.23 dS $m^{-1}$. $NO_3-N$ concentrations was ranged from 0.12 to 13.77 mg $L^{-1}$, $SO_4^{2-}$ concentrations was ranged from 1.84 to 63.01 mg $L^{-1}$ and $Cl^-$ concentrations were ranged from 10.46 to 72.09 mg $L^{-1}$. Average values of $NO_3-N$, $SO_4^{2-}$ and $Cl^-$ were 4.00 mg $L^{-1}$, 12.70 mg $L^{-1}$ and 27.57 mg $L^{-1}$, respectively. $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ concentrations were ranged from 3.24 to 36.99 mg $L^{-1}$, 1.44 to 14.93 mg $L^{-1}$ and 6.12 to 25.25 mg $L^{-1}$, respectively. Average concentrations were 13.06 mg $L^{-1}$ in $Ca^{2+}$, 6.02 mg $L^{-1}$ $Mg^{2+}$ and 12.08 mg $L^{-1}$ in $Na^+$. In waste nutrient solution after hydroponics, pH range was shown from 4.3 to 8.8 and the average was 6.7. EC range was shown from 0.44 to 2.37 dS $m^{-1}$ and the average 1.15 dS $m^{-1}$. Range of $NO_3-N$, $PO_4-P$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ in waste nutrient solution were $10{\sim}212$, $0.56{\sim}26.1$, $10{\sim}295$, $16{\sim}215$, $9{\sim}54$ and $10{\sim}53$ mg $L^{-1}$ respectively. Average concentration were 100 mg $L^{-1}$ in $NO_3-N$, 12.15 mg $L^{-1}$ in $PO_4-P$, 99 mg $L^{-1}$ in $K^+$, 78 mg $L^{-1}$ in $Ca^{2+}$, 26 mg $L^{-1}$ in $Mg^{2+}$ and 26 mg $L^{-1}$ in $Na^+$. Inorganic matters in waste nutrient solution after hydroponics was higher than that of ground water for hydroponics.

본 조사는 충북지역의 양액재배 농가에서 양액재배를 위한 지하수 수질과 양액 재배 후 버려지는 폐양액의 수질에 대한 기초 자료를 얻고자 수행되었다. 양액재배를 위한 지하수의 수질 조사는 19개 지점의 양액재배농가에서 수집하여 분석하였고, 폐양액은 그중 15개 지점을 선택하여 분석하였다. 양액재배에 이용되는 지하수의 수질 분석결과 pH의 수준은 $6.2\sim7.7$이었고, 평균은 6.8이었다. EC의 분포범위는$0.10\sim0.45$ dS $m^{-1}$ 이었고, 평균은 0.23 dS $m^{-1}$ 이었다. $NO_3-N$ 농도의 분포범위는 $0.12\sim13.77$ mg $L^{-1}$, $SO_4^{2-}$의 분포범위는 $1.84\sim63.01$ mg $L^{-1}$, 그리고 $Cl^-$의 분포범위는 $10.46\sim72.09$ mg $L^{-1}$이었다. 그들의 평균값은 각각 4.00 mg $L^{-1}$, 12.70 mg $L^{-1}$ 및 27.57 mg $L^{-1}$이었다. $Ca^{2+}$, $Mg^{2+}$$Na^+$의 분포 범위는 각각 $3.24\sim36.99$ mg $L^{-1}$, $1.44\sim14.93$ mg $L^{-1}$$6.12\sim25.25$ mg $L^{-1}$이었고, 평균 농도 값은 $Ca^{2+}$ 13.06, $Mg^{2+}$ 6.02 및 $Na^+$ 12.08 mg $L^{-1}$이었다. 양액재배 후 버려지는 폐양액에서 pH 수준은 $4.3\sim8.8$ 이었고, 평균은 6.7이었다. EC의 분포범위는 $0.44\sim2.37$ dS $m^{-1}$이었고, 평균은 1.15 dS $m^{-1}$이었다. $NO_3-N$, $PO_4-P$, $K^+$, $Ca^{2+}$, $Mg^{2+}$$Na^+$ 의 분포범위는 각각 $10\sim212$, $0.56\sim26.1$, $10\sim295$, $16\sim215$, $9\sim54$$10\sim53$ mg $L^{-1}$이었다. 평균 농도 값은 $NO_3-N$ 100, $PO_4-P$ 12.15, $K^+$ 99, $Ca^{2+}$ 78, $Mg^{2+}$ 26 및 $Na^+$ 26 mg $L^{-1}$이었다. 양액 재배 후 버려지는 폐양액 중의 무기성분 함량은 양액재배에 이용되는 원수에 비해 상당히 높아졌다.

Keywords

References

  1. Buwalda, F. and Kim, K. S. (1994) Effects of irrigation frequency on root formation and shoot growth of spray chrysanthemum cuttings in small jute plugs, Scientia Horticulturae 60, 125-138 https://doi.org/10.1016/0304-4238(94)90067-1
  2. Kim, J. H., Lee, J. S., Kim, B. Y., Hong, S. G. and Ahn, S. K. (1999) Analysis of ground water used for agriculture in kyonggi province, Korean J. Environ. Agric. 18(2), 148-153
  3. Lee, K. B., Lee, D. B., Kang, J. G. and Kim, J. D. (1999) Seasonal variation in water quality of mankyeong river and groundwater at controlled horticulture region, J. Kor. Soc. Soil Sci. Fert. 32(3), 223-231
  4. Lee, D. B., Lee, K. B. and Rhee, K. S. (1996) Changes of chemical contents in groundwater at controlled horticulture in honam area, Korean J. Environ. Agric. 15(3), 348-354
  5. Benoit, F. (1992) Practical guide for soilless culture techniques, European Vegetable R&D Center. pp. 10-12
  6. Bae, J. H., Cho, Y. R. and Lee, Y. B. (1995) Field survey for well water quality in hydroponic farms, J. Bio. Fac. Env. 4(1), 80-88
  7. Bae, J. H. and Lee, Y. B. (1996) Analysis of well water quality for hydroponic farms in chollabuk-do area, J. Bio. Fac. Env. 5(2), 131-137
  8. Shin, W. K., Lee, Y. H., Cheon, S. G., Hwang, Y. H. and Cho, K. H. (1998) Ionic characteristics of the ground water for hydroponics in kyeongnam area, J. Bio. Fac. Env. 7(3), 246-252
  9. Wohanka, W. (1992) Slow sand filtration and UV radiation : low-cost techniques for disinfection of recirculating nutrient solution or surface water, Pore. 8th Int. Congr. Soilless Culture, 497-511
  10. Runia, W. T. (1994) Disinfection of recirculation water from closed cultivation systems with ozone, Acta Hort. 361, 388-396
  11. Lee, S. Y., Lee, S. J., Seo, M. W. Lee, S. W. and Sim. S. Y. (1999) Reusing techniques of Nutrient Solution for recycling hydroponic culture of lettuce, J. Bio Env. Con. 8(3), 172-182
  12. Hollen, B. F., Owens, J. R. and Sewell, J. I. (1992) Water quality in a stream receiving dairy feedlot effluent, J. Environ. Qual. 11, 5-9 https://doi.org/10.2134/jeq1982.00472425001100010002x
  13. Sharpley, A. N., Chapra, S. C. Wedepohl, R., Sims, J. T., Aaniel, T. C. and Reddy, K. R. (1994) Managing agricultural phosphorus for protection of surface waters : Issues and options, J. Environ. Qual. 23, 437-451 https://doi.org/10.2134/jeq1994.00472425002300030006x
  14. Ministry of Environment. (2000) The standard methods of water analysis. Ministry of Environment, Seoul, Korea
  15. APHA, AWWA, WPCF. (1992) Standard methods for the examination of water and wastewater, 18th, Washington. DC
  16. Lee, J. S., Jung, G. B., Kim, J. H. and Kim, B. Y. (1998) Irrigation water quality of the Kyoungan stream, Korean J. of Environ Agric. 17(2), 136-139

Cited by

  1. Selection of Optimum System in Constructed Wetlands for Treating the Hydroponic Waste Solution Containing Nitrogen and Phosphorus vol.45, pp.5, 2012, https://doi.org/10.7745/KJSSF.2012.45.5.764
  2. Retention of phosphorus on calcite and dolomite: speciation and modeling vol.4, pp.66, 2014, https://doi.org/10.1039/C4RA05461J
  3. Treatment Efficiencies and Decomposition Velocities of Pollutants in Constructed Wetlands for Treating Hydroponic Wastewater vol.44, pp.5, 2011, https://doi.org/10.7745/KJSSF.2011.44.5.937