Characterization of Biopesticides (Bacillus thuringiensis) Produced in Korea

국내에서 생산된 Bacillus thuringiensis 살충제의 특성

  • Kil, Mi-Ra (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Da-A (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Choi, Su-Yeon (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Paek, Seung-Kyoung (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Jin-Su (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Jin, Da-Yong (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Hwang, In-Chon (Central Research Institute, Kyung Nong Co.) ;
  • Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 길미라 (충남대학교 농업생명과학대학 응용생물과) ;
  • 김다아 (충남대학교 농업생명과학대학 응용생물과) ;
  • 최수연 (충남대학교 농업생명과학대학 응용생물과) ;
  • 백승경 (충남대학교 농업생명과학대학 응용생물과) ;
  • 김진수 (충남대학교 농업생명과학대학 응용생물과) ;
  • 김대용 (충남대학교 농업생명과학대학 응용생물과) ;
  • 황인천 ((주)경농 중앙연구소) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물과)
  • Published : 2007.09.30

Abstract

Characteristics of the 5 biopesticides that included Bacillus thuringiensis and on the domestic markets were investigated. These products were contained different strains of B. thuringiensis, for examples; product A and E was B. thuringiensis subsp aizawai; product B was B. thuringiensis; product C was B. thuringiensis Berline var. kurstaki; product D was B. thuringiensis var. kurstaki. Number of active spores were counted because they could influence the bio-activity against target pests. Only product C are contained the fixed quantity as its label, however, product D and E were a tenth part, and product A and B were a hundredth part of their descriptions. The pHs of product A and B were measured 3.67 and 3.73, and C, D and E were 5, respectively. Typical bypyramidal crystals produced from B. thuringiensis was found in only product C under a phase contrast microscope. For the uniform formulation of products that conformed whether B. thuringiensis were equally spreaded on the crops, B. thuringiensis in the C, D and E were equally grown on the nutrient agar medium As a results, product A were more different from product C than any other products. When product A and C were bioassayed against different larval stages of diamondback moth, their mortalities with spraying application were showed 100% after 48 hours.

국내에서 시판되고 있는 5개의 미생물농약(A제품 : Bacillus thuringiensis subsp aizawai, B제품 : B. thuringiensis, C제품 : B. thuringiensis Berline Variety kurstaki, D제품 : B. thuringiensis var. kurstaki, E제품 : B. thuringiensis subsp aizawai)에 대한 특성을 조사하였다. 제품의 생물활성에 영향을 미칠 수 있는 활성포자수의 조사 결과, 각 각 제품에 표시되어 있는 숫자 보다 A B제품은 약 100배, D E제품은 약 10배로 감소되어 나타났고, C제품은 유사하게 나타나는 경향을 보였다. 5개 제품의 pH를 측정한 결과 A, B제품은 각각 pH 3.67, pH 3.73으로 나타났고, 나머지 3개 제품은 약 pH 5로 나타났다. 위상차현미경으로 관찰된 독소단백질의 형태에서는 C제품이 B. thuringiensis 고유의 뚜렷한 이중피라미드모양의 독소단백질 모습을 갖고 있었다. 또한 전자현미경으로 관찰된 A제품에서는 이중피라미드모양이 심하게 마모되어있는 것을 확인하였다. 한편, B. thuringiensis 제품을 작물에 사용하였을 때 균일하게 도포되는지 여부를 확인하기 위하여 제형의 균일도를 조사하였다. 그 결과 C D E 제품은 NA배지에 균일하게 균이 배양되었고, A B 제품은 NA배지 상에 균일성을 보이지 않았다. 제품상의 특성에서 가장 큰 차이를 보인 'A'와 'C'제품으로 배추좀나방 유충을 이용하여 생물검정을 한 결과, 두 제품 모두 추천 농도에서 48시간 이후 100% 사충율을 보였으나 'A'제품의 경우에는 희석 배수에 따라 사망률이 일정하지 않게 나타났다.

Keywords

References

  1. Bernhard, K. and R. Utz (1993) Production of Bacillus thuringiensis insecticide for experimental and commercial uses. in: Bacillus thuringiensis, An Envimment Biopesticide, Theory and Practice, eds. Entwistle, P.F., Cory, J.S., Bailey, M.J. & Higgs, S.pp.255 -267. Chichester: John Wiley and Sons Ltd, ISBN 0471933066
  2. Berliner, E (1915) Uber die schlaffsuchut der Mehlmottenraupe (Ephestia euhnella Zell) und ihre Erreger Bacillus thurigiensis n,sp. zeitschrift fur Angewandte. Entomology 2:29 -139
  3. Bruce, E., T. N. Finson, M. W. Johnson and D. G. Hecke (1994) Cross-Resistance to Bacillus thuringiensis Toxin Cry I F in the Diamondback Moth (plutella xylostella). Appl. Environ. Microbiol. 4627-4629
  4. DeLucca, A J., H, J. G. Simonson and A. D., Larson (1981) Bacillus thuringiensis distribution in soils of the United States. Can. J. Microbiol. 27:865-870 https://doi.org/10.1139/m81-137
  5. DeLucca, A. J., M. S. Palmgren and A. Ciegler (1982) Bacillus thuringiensis in grain elevator dusts. Can. J. Microbiol. 28:452 -456 https://doi.org/10.1139/m82-068
  6. Fangneng H., L. L. Buschman and R. A. Higgins (2001) Larval feeding behavior of Dipel-resistant and susceptible Ostrinia nubilalis on diet containing Bacillus thuringiensis (Dipel $ES^{TM}$). Entomol. Experi. Applica. 98:141-148 https://doi.org/10.1023/A:1018780325689
  7. Gary R. W. and T. G. Benoit (1993) Alkaline pH Activate Bacillus thuringiensis Spores. J. Invertebr. Pathol. 62:87 -89 https://doi.org/10.1006/jipa.1993.1079
  8. Golcberg, L. J. and J. Margalit (1977) A baterial spore demonstration rapid larvicidal against Anopheles serengotii, Uranotaenia unguiculata, Culev univittatus, Aedes aegypi and Culex pipiens. Mosq. News. 37:355 -358
  9. Graciela B., B. J. E. Lozbetez-Meza, G. Cozzi, C. F. Piccinetti, and J. E. Ibarra. (2000) Characterization of INTA 51-3, a New Atypical Strain of Bacillus thuringiensis from Argentina. Microbiol. 41:369-401
  10. Idris, A. B., Husaan. A. K. and M. T. Siti Hajar (2004) Responses of Three Strain of Diamondback Moth, Plutella xylostella(L.) on Bacillus thuringiensis var. aizawai and Fipronil. J. Asia-pacific Entomol. 7(1): 113-117 https://doi.org/10.1016/S1226-8615(08)60206-X
  11. Ishiwata, S. (1901) On a kind of sever flacherie (sotto disease) Dainihon Sanshi Kaiho, 9:1-5
  12. Karamanlidou, G., A. F. Lambropoulos, S. I. Koliais, D. Ellar and C. Kastritsis (1991) Toxicity of Bacillus thuringieinsis to laboratory populations of the Olive fruit fly (Dacus oleae). Appl. Environ. Microbiol. 57:2277 -2282
  13. Kim H. S., H. W. Park, D. W. Lee, Y. M. Yu, J. I. Kim and S. K. Kang (1995) Distribution and Characterization of Bacillus thuringiensis isolated from sails of sericulture in Korea. Korea J. Seric, Sci. 37(1):57 -61
  14. Lee, I. H., Y. H Je, J. E. Chang, J. Y. Roh, H. W. Oh, S. G. Lee, S. C. Shin and K. S. Boo (2001) Isolation and charaterization of a Bacillus thuringiensis ssp. kurstaki strain toxic to Spodoptera exigua and Culex pipiens. Microbiol. 43:284-287
  15. Martin, P. A. W. and R. S. Travers (1989) Worldwide abundance and distribution of Bacillus thurigiensis in an Animal Feed Mill. Appl. Environ, Microbiol. 55:2437 -2442
  16. McWhorter, G. M., E. C. Berry and L. C. Lewis (1972) Control of the European com Borer with two varieties of Bacillus thuringiensis. J. Economic Entomology 65:1414-1417 https://doi.org/10.1093/jee/65.5.1414
  17. Mizuki, E., M. ohba, T. Akao, S. Yamashita, H. Saitoh and Y. S. Park (1999) Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells. J. Appl. Microbiol. 86:477 -486 https://doi.org/10.1046/j.1365-2672.1999.00692.x
  18. Mohan, M. and G. T. Guja.r (2002) Charatierization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth(plutellidae: Lepidoptera). J. Invertebr, Pathol. 82:1-11 https://doi.org/10.1016/S0022-2011(02)00194-5
  19. Phba, M., K. Aizawa and S. Sudo (1984) Distnbution of Bacillus thuringiensis in sericultural farms of fukuoka prefecture, Japan. Proc. Assoc. Plant Prot. Kyushu 30:152-155
  20. Ohba, M and K. Aizawa. (1986) Distribution of Bacillus thuringiensis in soil of Japan. J. Invertebr, pathol. 42:12-20
  21. Ohba, M., Y, M. Yu and K. Aizawa. (1988) Occurrence of non-insecticidal Bacillus thuringiensis flagellar serotype 14 in th soil in Japan. J. Invertebr, Pathol. 47:12-20 https://doi.org/10.1016/0022-2011(86)90158-8
  22. Phani K. K. and G. T. Gura.r (2004) Baseline susceptibility of the diamondback moth, Plutella xylostella(Linnaeus) to Bacillus thuringeinsis CrylA toxins in India. Crop Prote. 24:207 -212
  23. Smith, R. A., and G. A Couche (1991) The phylloplane as a source of Bacillus thurngiensis. Appl. Environ. Microbiol. 57:311-315
  24. Talekar, N. S. and A. M. Shelton (1993) Biology. ecology, and management of the diamondback moth. Annu, Rev. Entomol. 38:275-301 https://doi.org/10.1146/annurev.en.38.010193.001423
  25. Tamez-Guerra, P, Iracheta, M. M. Pereyra-Alferez, B. Galan-Wong, L. J. Gomez-Flores, R. Tamez-Guerra and R. S. C. Rodriguez-Padilla (2004) Characterization of Mexican Bacillus thuringiensis strains toxic for lepidopteran and coleopteran larvae. J. invertebr. pathol. 86:7 -18 https://doi.org/10.1016/j.jip.2004.02.009
  26. Travis R. G. and M. O'Callaghan. Bacillus thuringiensis: Biology, Ecology and Safety. John wiley and Sons, LTD
  27. Raun, E. S. (1963) Com borer control with Bacillus thuringiensis Berliner. Iowa State Journal of Science. 38:141-150
  28. Rodriguez, M. M. and De La M. Torre (1996) Effect of the dilution rate on the biomass yield of Bacillus thuringiensis and determination of its rate coefficients under steady-state conditions. Appl. Microbial. and Biotechnol. 45:546-550
  29. Rowe, G. E. and A Margaritis (1994) Endocellular fatty acid composition during batch growth and sporulation of Bacillus thuringiensis kurstaki. J. fermentation an Bioengineering. 77:503 -507 https://doi.org/10.1016/0922-338X(94)90118-X