Herbicidal and Insecticidal Potentials of 5-Aminolevulinic acid, a Biodegradable Substance

생분해성 생리활성물질 5-aminolevulinic acid의 제초 및 살충활성

  • Chon, Sang-Uk (Callus Co., Ltd., TBI Center, Gwangju Institute of Science and Technology)
  • 천상욱 (광주과학기술원 창업기술지원센터 (주)캐러스)
  • Published : 2007.03.30

Abstract

ALA (5-aminolevulinic acid) has been proposed as a tetrapyrrole-dependent photodynamic herbicide and insecticide by the action of the protoporphyrinogen IX oxidase (Protox IX). The present study was conducted to determine growth responses of plant and insects to ALA, biodegradable biopesticidal substance. In the paddy condition experiment, plant height and shoot fresh weight of barnyardgrass (Echinochloa crus-galli) was more reduced by ALA than rice plants, even though both plant species show great phytotoxicity. Hairy crabgrass (Digitaria sanguinalis), a monocot weed, was more sensitive to ALA at 5mM under upland condition when ALA applied on the foliage, compared with soybean (Glycine max) as a dicot crop. ALA solutions were tested for their insecticidal and larvicidal activities against Spodaptera exigua (Hubner) and Tetranychus urticae Koch. by foliar application and leaf-dipping method. The result showed higher insecticidal activity of ALA at 10mM and its mixture with insecticide luferon against S. exigua. Strongest insecticidal activity against T. urticae was observed from the ALA solution at 10mM 72 days after application. This results show that ALA solution had potent herbicidal and insecticidal activities against agricultural pests even though their activities were lower than those of synthetic pesticides.

5-Aminolevulinic acid (ALA)는 protoporphyrinogen IX oxidase(Protox IX)의 작용기작에 의해 tetrapyrrole 의존형 광활성 제초제 또는 살충제로서 제안되어 왔다. 본 연구는 생분해성 생물농약 물질로서 ALA에 대한 식물과 해충의 생육반응을 검토하기 위해 수행되었다. 수도적 조건에서 ALA는 벼와 피 두 초종에 대해 독성을 보였으며 벼보다는 피의 초장과 지상부 생체중을 더 억제하였다. 밭 조건에서 두과작물 콩과 화본과 잡초 바랭이에 5 mM ALA를 처리한 결과 바랭이가 더 민감한 생육반응을 보였다. ALA 10 mM(10배액)로 파밤나방에 대한 살충효과는 살포법으로 처리한 결과 단제 및 합성 살충제 lufenuron과의 조합처리에서 다소 높게 나타났다. leaf disk법으로 응애에 대한 살비효과를 검정한 결과 10 mM ALA 처리 후 72시간에 가장 높게 나타났다. 이상의 결과로 볼 때 ALA는 비록 그 활성이 기존의 합성농약보다 낮을지라도 농업유해생물에 대해 잠재적인 제초 및 살충활성을 갖고 있는 것으로 나타났다.

References

  1. Chereskin, B. M. and P. A. Castelfranco (1982) Effects of iron and oxygen on chlorophyll biosynthesis. 2. Observations on the biosynthetic pathway in isolated etiochloroplasts. Plant Physiol. 69: 112 -116 https://doi.org/10.1104/pp.69.1.112
  2. Choi, C, B. S. Hong, H. C. Sung, H. S. Lee and J. H. Kim (1999) Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene for Bradyrhizobium japonicum. Biotech. Letters. 21:551 -554 https://doi.org/10.1023/A:1005520007230
  3. Chon S. U. (2003) Herbicidal activity of $\delta$-aminolevulinic acid on several plants as affected by application methods. Korean J. Crop Sci. 48:50-55
  4. Chon S. U., S. Jung, H. O. Boo and S. K. Han (2006) Natural photodynamic activity of 5-aminolevulinic acid produced by an E. coli overexpressing ALA synthase from Bradyrhizobium japonicum. Koren J. Crop Sci. 51:356-361
  5. Dailey, H. A. (1990) Biosynthesis of heme and chlorophylls. McGraw-Hill Publishing Co. New York, USA, pp.594
  6. Duke, S. O., J. Lydon, J. M. Becerril, T. D. Sherman, L. P. Lehnen and H. Matsumoto (1991) Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci. 39:465 -473
  7. Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi and M. Konnai (1997a) New physiological effects of 5 aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Biosci. Biotech. Biochem. 61:2025-2028 https://doi.org/10.1271/bbb.61.2025
  8. Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi and M. Konnai (1997b) Promotive effect of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regulation 22:109-114 https://doi.org/10.1023/A:1005883930727
  9. Johnson, W.O., G. E. Kollman, C. Swithenbank and R. Y. Yih (1978) RH-6201 (blazer): A new broad spectrum herbicide for postemergence use in soybeans. J. Agric. Food. Chem. 26:285 -286 https://doi.org/10.1021/jf60215a027
  10. Matsumoto, H., Y. Tanida and K. Ishizuka (1994) Porphyrin intermediate involved in herbicidal action of $\delta$-aminolevulinic acid on duckweed. Pestic. Biochem. Physiol. 48:214 -221 https://doi.org/10.1006/pest.1994.1022
  11. Rebeiz, C. A., A. Montazer-Zouhoor, H. J. Jopen and S. M. Wu (1984) Photodynamic herbicides: Concept and phenomenology. Enzyme Microb. Technol. 6:390-401 https://doi.org/10.1016/0141-0229(84)90012-7
  12. Rebeiz, C. A., J. A. Juvik and C. C. Rebeiz (1988) Photodynamic insecticides I. Concept and phenomenology. Pesticide Biochem. Physiol. 30:11-27 https://doi.org/10.1016/0048-3575(88)90055-7
  13. Roy, C. B., and M. Vivekanandan (1998) Role of aminolevulinic acid in improving biomass production in Vigna catjung, V. mungo, and V. radiata. Biologia Plantarum 41:211 -215 https://doi.org/10.1023/A:1001806429035
  14. Sundquvist, C. (1969) Transformation of protochlorophyllide, formed from exogenous $\delta$-aminolevulinic acid in continuous light and flashlight. Physiol. Plant 22: 147-156 https://doi.org/10.1111/j.1399-3054.1969.tb07850.x
  15. Tanaka, T., K. Takahashi, Y. Hotta and Y. Takeuchi (1992) 5-Aminolevulinic acid as plant growth stimulator. Eur. Pat. App. EP 541-776
  16. Towers, G. H. N. and J. P. Arnason (1988) Photodynamic herbicides. Weed Technol. 2:545-549 https://doi.org/10.1017/S0890037X00032425
  17. Watanabe, K., T. Tanaka, Y. Hotta, H. Kuramochi and Y. Takeuchi. (2000) Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regulation 32:99-103
  18. Weinstein, J. D. and S. I. Beale (1985) Enzymatic conversion of glutamate to $\delta$-aminolevulinic acid in soluble extracts of the unicellular green alga, Chlorella vulgaris. Arch Biochem Biophys. 239:454-464