Multiple Spinal Intramedullary Cavernous Malformation with Multiple Intracranial Involvement

Intraspinal cavernous malformation (CM) accounts for 5% to 16% of all spinal vascular abnormalities. Multiple spinal cord CMs are very rare and only a few cases have been described. We report a patient presented with right chest paresthesia and seizure, and diagnosed as multiple spinal intramedullary CM and intracranial involvement.

KEY WORDS: Cavernous malformation · Intramedullary · Multiple · Spine.

INTRODUCTION

Cavernous malformation (CM) is an uncommon central nervous system (CNS) vascular disorder, and constitutes 9% of CNS vascular malformations. These angiographically occult lesions are well-circumscribed entities, consisting of thin-walled, lobulated vascular channels, without intervening neural tissue. The spinal cord is an uncommon site for CMs, and when they do occur, are frequently in the epidural space; intramedullary ones are rare. Multiple spinal intramedullary CMs are very rare, and only a few cases have been described. We report a case of multiple spinal intramedullary CM with multiple intracranial involvement.

CASE REPORT

A 33-year-old male with right-sided chest tightness and tingling sensation was referred to our hospital for seizure. This was the first occurrence of a generalized tonic-clonic seizure. He had no prior history of seizure, trauma, or febrile convulsion. Band-like right chest sensory changes had begun 2 months before. Physical and neurological examinations were normal, except for hypesthesia at the right T6,7 dermatome level. There were no abnormal laboratory findings and interictal electroencephalogram was normal.

Brain magnetic resonance imaging (MRI) revealed multiple CMs on the cerebral hemisphere, cerebellum, and brain stem (Fig. 1). The right temporal lobe CM was the largest and was considered to be the seizure focus.

Spine MRI showed two hyperintense lesions with dark signal rim on T2 weighted images and iso-to-hyperintense on T1 weighted images at C2-3 and T5 levels. They were not contrast-enhancing (Fig. 2, 3).

![Fig. 1. Axial magnetic resonance images revealing multiple intracranial cavernous malformation in the brain stem, cerebellum (A), right temporal lobe (B), and cerebral hemisphere (C).](image-url)
Previous patient family history did not have any evidence of neurological disease. But, his daughter's screening MRI in the neuraxis showed multiple intracranial cavernous malformation without spinal involvement.

Patient refused operation of intracranial and thoracic CM, and was discharged with symptomatic improvement after medical treatment.

DISCUSSION

Spinal cord CMs can be extradural, intradural extramedullary, or intramedullary. Lesions are most frequently localized at the cervical and thoracic spinal cord, but may be seen at any level from the upper cervical cord to cauda equina. They may be asymptomatic, or they may cause pain, myelopathy, or sensorimotor deficit due to hemorrhage and mass effect.

Widespread use of MRI has resulted in enhanced sensitivity and specificity for CM diagnosis.

Intraspinal CMs account for 5% to 16% of all spinal vascular abnormalities. Multiple spinal cord CMs are very rare, and only a few cases have been described. Zygadlis et al. reviewed 116 patients with intramedullary spinal CM which had been published between 1903 and 1996. They found only one patient who had two spinal intramedullary CMs. Vishne et al. reported 17 patients with intramedullary spinal cord CM. Only one patient had a multiple CM in the spinal cord.

Intraspinal CMs commonly accompany intracranial CMs. Coexistence of CMs in the brain and spinal cord typically occurs in patients with the familial form of CM. It has an autosomal dominant pattern of inheritance with incomplete penetrance. Genetic analysis has identified...
foci on chromosomes 7q11-21, 7p13-15, and 3q25, 2-2718.
Cohen-Gadol et al.5 reported that as many as 40% of
patients with a spinal CM may harbor a similar intracranial
lesion, and approximately 40% with coexisting spinal and
intracranial CMs may have the nonfamilial (sporadic) form.

Our patient had the familial form of multiple spinal
intramedullary CMs, located in the cervical and thoracic
spinal cord, with multiple intracranial involvement. We
consider that it is necessary to study genetic analysis of
him and his family.

CONCLUSION

A case of multiple spinal intramedullary CM with multiple
intracranial involvement is presented. It deserves an attention
due to its rarity and is an important reminder to search the
neuraxis (brain and whole spinal canal) in patients with spinal
intramedullary CM, even if asymptomatic.

References
1. Anson JA, Spezler RF: Surgical resection of intramedullary spinal
2. Awad IA, Robinson JR Jr, Mohansey S, Estes ML: Mixed vascular
malformations of the brain: clinical and pathogenetic considerations.
Neurosurgery 33: 179-188; discussion 188, 1993
cavernous angiomas: a literature meta-analysis. Surg Neurol 41: 381-
388, 1994
5. Cohen-Gadol AA, Jacob JT, Edwards DA, Krauss WE: Coexistence of
intracranial and spinal cavernous malformations: a study of prevalence
6. Congrove GR, Bertrand G, Fontaine S, Robitaille Y, Melanson D:
8. Dabrowski J, Zaborowski JM, Kurth J, Spezler RF, Rich SS, Orr HTT,
et al.: A gene responsible for cavernous malformations of the brain
9. Graziani N, Bouillot P, Figarella-Branger D, Dufour H, Peragut JC,
Grissi F: Cavernous angiomas and arteriovenous malformations of
the spinal epidural space: report of 11 cases. Neurosurgery 35: 856-
863; discussion 863-864, 1994
MB, Post KD: Symptomatic cavernous malformations affecting
the spine and spinal cord. Neurosurgery 37: 195-204; discussion
204-205, 1995
11. Lee KS, Spezler RF: Spinal cord cavernous malformation in a patient
with familial intracranial cavernous malformations. Neurosurgery 26:
877-880, 1990
12. Mianaei JN, Awad IA: Intracranial cavernous malformations: lesion
behavior and management strategies. Neurosurgery 37: 591-605,
1995
13. Marchuk DA, Gallione CJ, Morrison LA, Clericiuzio CL, Hart BL,
Kosofsky BE, et al.: A locus for cerebral cavernous malformations
maps to chromosome 7q in two families. Genomics 28: 311-314,
1995
and venous malformations, in Barrow DL (ed): Intracranial Vascular
15. Narayan P, Barrow DL: Intramedullary spinal cavernous malformation
following spinal irradiation. Case report and review of the literature.
16. Ogilvy CS, Louis DN, Ojemann RG: Intracerebral cavernous
angiomas of the spinal cord: clinical presentation, pathological
features, and surgical management. Neurosurgery 31: 219-229;
discussion 229-230, 1992
17. Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti
K, Knight JT, et al.: Cerebral cavernous malformations. Incidence and
18. Sandalkidjogl IE, Wiedemann H, Gasser T, Augat P, Engelhorn T,
Stolke D: Intramedullary spinal cord cavernous malformations:
clinical features and risk of hemorrhage. Neurosurg Rev 26:
253-256, 2003
new cases. Neurosurg Rev 27: 93-98, 2004
21. Vaquero J, Martinez R, Martinez P: Cavernomas of the spinal cord:
22. Vishnev AG, Sankhla S, Anson JA, Zaborowski JM, Spezler RF: Surgical
resection of intramedullary spinal cord cavernous malformations:
delayed complications, long-term outcomes, and association with
cryptic venous malformations. Neurosurgery 41: 1094-1100; discussion
1100-1101, 1997
23. Vishnev AG, Zaborowski JM, Spezler RF: Patients with spinal cord
cavernous malformations are at an increased risk for multiple neuraxis
cavernous malformations. Neurosurgery 45: 30-32; discussion 33,
1999
24. Zaborowski JM, Wachter TM, Spezler RF, Johnason B, Golfinos J,
Drayer BP, et al.: The natural history of familial cavernous malformations:
25. Zevgardis D, Medele RJ, Hamburger C, Steiger HJ, Reulen HJ:
Cavernous haemangiomas of the spinal cord. A review of 117 cases.
Acta Neurochir (Wien) 141: 237-245, 1999