Alpine Microorganisms: Useful Tools for Low-Temperature Bioremediation

  • Published : 2007.08.30

Abstract

Cold environments, including polar and alpine regions, are colonized by a wide diversity of micro-organisms able to thrive at low temperatures. There is evidence of a wide range of metabolic activities in alpine cold ecosystems. Like polar microorganisms, alpine microorganisms playa key ecological role in their natural habitats for nutrient cycling, litter degradation, and many other processes. A number of studies have demonstrated the capacity of alpine microorganisms to degrade efficiently a wide range of hydrocarbons, including phenol, phenol-related compounds and petroleum hydrocarbons, and the feasibility of low-temperature bioremediation of European alpine soils by stimulating the degradation capacity of indigenous microorganisms has also been shown.

Keywords

References

  1. Aislabie, J., D.J. Saul, and J.M. Foght. 2006. Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10, 171-179 https://doi.org/10.1007/s00792-005-0498-4
  2. Allard, A.S. and A.H. Neilson. 1997. Bioremediation of organic waste sites: a critical review of microbiological aspects. Int. Biodet. Biodegr. 39, 253-285 https://doi.org/10.1016/S0964-8305(97)00021-8
  3. Atlas, R.M. and R. Bartha. 1998. Microbial ecology: Fundamentals and applications, 4th(ed). Benjamin/Cummins Science Publishing, Menlo Park, California, USA
  4. Bakermans, C. 2007. Genetic approaches to determining psychrotolerance mechanisms. Oral presentation, 108th General Meeting, ASM, Toronto, Canada
  5. Bergauer, P., P.A. Fonteyne, N. Nolard, F. Schinner, and R. Margesin. 2005. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Chemosphere 59, 909-918 https://doi.org/10.1016/j.chemosphere.2004.11.011
  6. Braddock, J.F., M.L. Ruth, J.L. Walworth, and K.A. McCarthy. 1997. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: implications for nutrientamended bioremediation. Environ. Sci. Technol. 31, 2078-2084 https://doi.org/10.1021/es960904d
  7. Gerday, C., M. Aittaleb, M. Bentahir, J.P. Chessa, P. Claverie, T. Collins, S. D'Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M.A. Meuwis, and G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. TIBTECH 18, 103-107 https://doi.org/10.1016/S0167-7799(99)01413-4
  8. Gerday, C. and N. Glansdorff. 2007. Physiology and biochemistry of extremophiles. ASM Press, Washington D.C., USA
  9. Hinteregger, C., R. Leitner, M. Loidl, A. Ferschl, and F. Streichsbier. 1992. Degradation of phenol and phenolic compounds by Pseudomonas putida EFII. Appl. Microbiol. Biotechnol. 37, 252-259
  10. Juck, D., T. Charles, L.G. Whyte, and C.W. Greer. 2000. Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiol. Ecol. 33, 241-249 https://doi.org/10.1111/j.1574-6941.2000.tb00746.x
  11. Kotturi, G., C.W. Robinson, and W.E. Inniss. 1991. Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl. Microbiol. Biotechnol. 34, 539-543
  12. Krallish, I., S. Gonta, L. Savenkova, P. Bergauer, and R. Margesin. 2006. Phenol degradation by immobilized cold-adapted yeast strains of Cryptococcus terreus and Rhodotorula creatinivora. Extremophiles 10, 441-449 https://doi.org/10.1007/s00792-006-0517-0
  13. Kuhn, M. 2008. The climate of snow and ice as boundary condition for microbial life. In R. Margesin, F. Schinner, J.C. Marx, and C. Gerday (eds), Psychrophiles: from Biodiversity to Biotechnology. Springer Verlag, Berlin Heidelberg, in press
  14. Labbe, D., R. Margesin, F. Schinner, L.G. Whyte, and C.W. Greer. 2007. Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated alpine soils. FEMS Microbiol. Ecol. 59, 466-475 https://doi.org/10.1111/j.1574-6941.2006.00250.x
  15. Love, D. 1970. Subarctic and subalpine: where and what? Arct. Antarct. Res. 2, 63-73
  16. MacNaugthon, S.J., J.R. Stephen, A.D. Venosa, G.A. Davis, Y.J. Chang, and D.C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65, 3566-1574
  17. Margesin, R. and F. Schinner. 1997a. Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel-oil in alpine soils. Appl. Environ. Microbiol. 63, 2660-2664
  18. Margesin, R. and F. Schinner. 1997b. Bioremediation of diesel-oil contaminated alpine soils at low temperatures. Appl. Microbiol. Biotechnol. 47, 462-468 https://doi.org/10.1007/s002530050957
  19. Margesin, R. and F. Schinner. 1999. A feasibility study for the in situ remediation of a former tank farm. World J. Microbiol. Biotechnol. 15, 615-622 https://doi.org/10.1023/A:1008994422216
  20. Margesin, R. and F. Schinner. 2001. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl. Environ. Microbiol. 67, 3127-3133 https://doi.org/10.1128/AEM.67.7.3127-3133.2001
  21. Margesin, R., P. Bergauer, and S. Gander. 2004. Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida. Extremophiles 8, 201-207 https://doi.org/10.1007/s00792-004-0378-3
  22. Margesin, R., V. Fauster, and P.A. Fonteyne. 2005a. Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett. Appl. Microbiol. 40, 453-459 https://doi.org/10.1111/j.1472-765X.2005.01704.x
  23. Margesin, R., P.A. Fonteyne, and B. Redl. 2005b. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 156, 68-75 https://doi.org/10.1016/j.resmic.2004.08.002
  24. Margesin, R., P.A. Fonteyne, F. Schinner, and J.P. Sampaio. 2007b. Novel psychrophilic basidiomycetous yeast species from alpine environments: Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov., and Rhodotorula glacialis sp. nov.. Int. J. Syst. Evol. Microbiol. in press
  25. Margesin, R., S. Gander, G. Zacke, A.M. Gounot, and F. Schinner. 2003b. Hydrocarbon degradation and enzyme activities of coldadapted bacteria and yeasts. Extremophiles 7, 451-458 https://doi.org/10.1007/s00792-003-0347-2
  26. Margesin, R., M. Hämmerle, and D. Tscherko. 2007a. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers and incubation time. Microb. Ecol. 53, 259-269 https://doi.org/10.1007/s00248-006-9136-7
  27. Margesin, R., D. Labbé, F. Schinner, C.W. Greer, and L.G. Whyte. 2003a. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69, 3085-3092 https://doi.org/10.1128/AEM.69.6.3085-3092.2003
  28. Margesin, R., F. Schinner, J.C. Marx, and C. Gerday (eds). 2008. Psychrophiles: from bodiversity to biotechnology. Springer Verlag, Berlin Heidelberg., in press
  29. Margesin, R., G. Zacke, and F. Schinner. 2002. Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct. Antarct Alp. Res. 34, 88-93 https://doi.org/10.2307/1552512
  30. Morita, R.Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39, 144-167
  31. Ren, S. and P.D. Frymier. 2003. Toxicity estimation of phenolic compounds by bioluminescent bacterium. J. Environ. Eng. - ASCE 129, 328-335 https://doi.org/10.1061/(ASCE)0733-9372(2003)129:4(328)
  32. Whyte, L.G., B. Goalen, J. Hawari, D. Labbe, C.W. Greer, and M. Nahir. 2001. Bioremediation treatability assessment of hydrocarbon- contaminated soils from Eureka, Nunavut. Cold Reg. Sci. Technol. 32, 121-132 https://doi.org/10.1016/S0165-232X(00)00025-2
  33. Whyte, L.G., J. Hawari, E. Zhou, L. Bourbonnière, W.E. Inniss, and C.W. Greer. 1998. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.. Appl. Environ. Microbiol. 64, 2578-2584
  34. Wu, Q., D.L. Bedard, and J. Wiegel. 1997. Effect of incubation temperature on the route of microbial reductive degradation of 2,3,4,6-tetrachlorobiphenyl in polychlorinated biphenyl (PCB)-contaminated and PCB-free freshwater sediments. Appl. Environ. Microbiol. 63, 2836-2843