Effect of Leuconustoc spp. on the Formation of Streptococcus mutans Biofilm

  • Kang, Mi-Sun (2nd stage of BK21 for School of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Kang, In-Chol (2nd stage of BK21 for School of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Kim, Seon-MI (2nd stage of BK21 for School of Dentistry, Dental Science Research Institute, Chonnam National University) ;
  • Lee, Hyun-Chul (Department of Microbiology, School of Medicine, Chonnam National University) ;
  • Oh, Jong-Suk (Department of Microbiology, School of Medicine, Chonnam National University)
  • Published : 2007.08.30

Abstract

Insoluble glucans synthesized by Streptococcus mutans enhance the pathogenicity of oral biofilm by promoting the adherence and accumulation of cariogenic bacteria on the surface of the tooth. The objective of this study was to investigate the effect of Leuconostoc spp. on the in vitro formation of S. mutans biofilm. Three strains, Leuconostoc gelidum A TCC 49366, Leuconostoc mesenteroides ssp. cremoris A TCC 19254 and Leuconostoc mesenteroides ssp. mesenteroides ATCC 8293, were used in this study. They exhibited profound inhibitory effects on the formation of S. mutans biofilm and on the proliferation of S. mutans. The water-soluble polymers produced from sucrose were most strongly produced by L. gelidum, followed by L. mesenteroides ssp. cremoris and L. mesenteroides ssp. mesenteroides. The mean wet weights of the artificial biofilm of S. mutans were also significantly reduced as a result of the addition of the water-soluble polymers obtained from Leuconostoc cultures. According to the results of thin-layer chromatographic analysis, the hydrolysates of the water-soluble polymers produced by Leuconostoc were identical to those of dextran T-2000, forming predominately ${\alpha}-(1-6)$ glucose linkages. These results indicate that dextran-producing Leuconostoc strains are able to inhibit the formation of S. mutans biofilm in vitro.

Keywords

References

  1. Albanese, A., T. Spanu, M. Sali, F. Novegno, T. D'Inzeo, R. Santangelo, A. Mangiola, C. Anile, and G. Fadda. 2006. Molecular identification of Leuconostoc mesenteroides as a cause of brain abscess in an immunocompromised patient. J. Clin. Microbiol. 44, 3044-3045 https://doi.org/10.1128/JCM.00448-06
  2. Anderson, M.H. and W. Shi. 2006. A probiotic approach to caries management. Pediatr. Dent. 28, 151-153
  3. Bradshaw, D.J. and P.D. Marsh. 1998. Analysis of pH-driven disruption of oral microbial communities in vitro. Caries Res. 32, 456-462 https://doi.org/10.1159/000016487
  4. Caglar, E., B. Kargul, and I. Tanboga. 2005. Bacteriotherapy and probiotics' role on oral health. Oral Dis. 11, 131-137 https://doi.org/10.1111/j.1601-0825.2005.01109.x
  5. Cerning, J. 1990. Exocellualr polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 7, 113-130
  6. Cheigh, H.S. and K.Y. Park. 1994. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. Nutr. 34, 175-203 https://doi.org/10.1080/10408399409527656
  7. Colby, S.M. and R.R. Russell. 1997. Sugar metabolism by mutans streptococci. Soc. Appl. Bacteriol. Symp. Ser. 26, 80S-88S
  8. Comelli, E.M., B. Guggenheim, F. Stingele, and J.R. Neeser. 2002. Selection of dairy bacterial strains as probiotics for oral health. Eur. J. Oral. Sci. 110, 218-224 https://doi.org/10.1034/j.1600-0447.2002.21216.x
  9. Hanada, N. and H.K. Kuramitsu. 1988. Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect. Immun. 56, 1999-2005
  10. Hanada, N. and H.K. Kuramitsu. 1989. Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect. Immun. 57, 2079-2085
  11. Handwerger, S., H. Horowitz, K. Coburn, A. Kolokathis, and G.P. Wormser. 1990. Infection due to Leuconostoc species: six cases and review. Rev. Infect. Dis. 12, 602-610 https://doi.org/10.1093/clinids/12.4.602
  12. Harper, D.S. and W.J. Loesche. 1984. Growth and acid tolerance of human dental plaque bacteria. Arch. Oral Biol. 29, 843-848 https://doi.org/10.1016/0003-9969(84)90015-3
  13. Hastings, J.W. and M.E. Stiles. 1991. Antibiosis of Leuconostoc gelidum isolated from meat. J. Appl. Bacteriol. 70, 127-134 https://doi.org/10.1111/j.1365-2672.1991.tb04438.x
  14. Hechard, Y., B. Derijard, F. Letellier, and Y. Cenatiempo. 1992. Characterization and purification of mesentericin Y105, an anti- Listeria bacteriocin from Leuconostoc mesenteroides. J. Gen. Microbiol. 138, 2725-2731 https://doi.org/10.1099/00221287-138-12-2725
  15. Inoue, M. and E.E. Smith. 1980. Specific inhibition of glucosyltransferase of Streptococcus mutans. Carbohydr. Res. 80, 163-177 https://doi.org/10.1016/S0008-6215(00)85323-9
  16. Kang, M.S., J. Chung, S.M. Kim, K.H. Yang, and J.S. Oh. 2006a. Effect of Weissella cibaria isolates on the formation of Streptococcus mutans biofilm. Caries Res. 40, 418-425 https://doi.org/10.1159/000094288
  17. Kang, M.S., B.G. Kim, J. Chung, H.C. Lee, and J.S. Oh. 2006b. Inhibitory effect of Weissella cibaria isolates on the production of volatile sulphur compounds. J. Clin. Periodontol. 33, 226-232 https://doi.org/10.1111/j.1600-051X.2006.00893.x
  18. Kim, D., J.F. Robyt, S.Y. Lee, J.H. Lee, and Y.M. Kim. 2003. Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr. Res. 338, 1183-1189 https://doi.org/10.1016/S0008-6215(03)00148-4
  19. Kobayashi, M., K. Funane, and T. Oguma. 1995. Inhibition of dextran and mutan synthesis by cycloisomaltooligosaccharides. Biosci. Biotechnol. Biochem. 59, 1861-1865 https://doi.org/10.1271/bbb.59.1861
  20. Koga, T., S. Sato, M. Inoue, K. Takeuchi, T. Furuta, and S. Hamada. 1983. Role of primers in glucan synthesis by glucosyltransferases from Streptococcus mutans strain OMZ176. J. Gen. Microbiol. 129, 751-754
  21. Lacaze, G., M. Wick, and S. Cappelle. 2007. Emerging fermentation technologies: Development of novel sourdoughs. Food Microbiol. 24, 155-160 https://doi.org/10.1016/j.fm.2006.07.015
  22. Lawford, G.R., A. Kligerman, T. Williams, and H.G. Lawford. 1979. Dextran biosynthesis and dextransucrase production by continuous culture of Leuconostoc mesenteroides. Biotechnol. Bioeng. 21, 1121-1131 https://doi.org/10.1002/bit.260210704
  23. Ljungh, A. and T. Wadstrom. 2006. Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 7, 73-89
  24. Loesche, W.J. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50, 353-380
  25. Marteau, P. and J.C. Rambaud. 1993. Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol. Rev. 12, 207-220 https://doi.org/10.1111/j.1574-6976.1993.tb00019.x
  26. Matsumoto, M., M. Tsuji, H. Sasaki, K. Fujita, R. Nomura, K. Nakano, S. Shintani, and T. Ooshima. 2005. Cariogenicity of the probiotic bacterium Lactobacillus salivarius in rats. Caries Res. 39, 479-483 https://doi.org/10.1159/000088183
  27. Montejo, M., C. Grande, A. Valdivieso, M. Testillano, J. Minguillan, K. Aguirrebengoa, and J. Ortiz de Urbina. 2000. Abdominal abscess due to Leuconostoc species in a liver transplant recipient. J. Infect. 41, 197-198 https://doi.org/10.1053/jinf.2000.0705
  28. Montville, T.J., C.L. Cooney, and A.J. Sinskey. 1977. Distribution of dextransucrase in Streptococcus mutans and observations on the effect of soluble dextran on dextransucrase activities. Infect. Immun. 18, 629-635
  29. Naidu, A.S., W.R. Bidlack, and R.A. Clemens. 1999. Probiotic spectra of lactic acid bacteria (LAB). Crit. Rev. Food Sci. Nutr. 39, 13-126 https://doi.org/10.1080/10408699991279187
  30. Persson, J. and P.O. Grande. 2006. Plasma volume expansion and transcapillary fluid exchange in skeletal muscle of albumin, dextran, gelatin, hydroxyethyl starch, and saline after trauma in the cat. Crit. Care Med. 34, 2456-2462 https://doi.org/10.1097/01.CCM.0000233876.87978.AB
  31. Rodrigues, S., L.M. Lona, and T.T. Franco. 2005. The effect of maltose on dextran yield and molecular weight distribution. Bioprocess Biosyst. Eng. 28, 9-14 https://doi.org/10.1007/s00449-005-0002-7
  32. Schilling, K.M. and W.H. Bowen. 1992. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect. Immun. 60, 284-295
  33. Shiroza, T., S. Ueda, and H.K. Kuramitsu. 1987. Sequence analysis of the gtfB gene from Streptococcus mutans. J. Bacteriol. 169, 4263-4270 https://doi.org/10.1128/jb.169.9.4263-4270.1987
  34. Takada, K., T. Shiota, R. Curtiss III, and S.M. Michalek. 1985. Inhibition of plaque and caries formation by a glucan produced by Streptococcus mutans mutant UAB108. Infect. Immun. 50, 833-843
  35. Tanriseven, A. and J.F. Robyt. 1993. Interpretation of dextransucrase inhibition at high sucrose concentrations. Carbohydr. Res. 245, 97-104 https://doi.org/10.1016/0008-6215(93)80062-J
  36. Wiater, A., A. Choma, and J. Szczodrak. 1999. Insoluble glucans synthesized by cariogenic streptococci: a structural study. J. Basic Microbiol. 39, 265-273 https://doi.org/10.1002/(SICI)1521-4028(199909)39:4<265::AID-JOBM265>3.0.CO;2-0