Molecular Characterization of Pseudomonas aeruginosa Isolates Resistant to All Antimicrobial Agents, but Susceptible to Colistin, in Daegu, Korea

  • Lee, Yoo-Chul (Department of Microbiology, Kyungpook National University School of Medicine) ;
  • Ahn, Byung-Jun (Department of Microbiology, Kyungpook National University School of Medicine) ;
  • Jin, Jong-Sook (Department of Microbiology, Kyungpook National University School of Medicine) ;
  • Kim, Jung-Uk (Department of Microbiology, Kyungpook National University School of Medicine) ;
  • Lee, Sang-Hwa (Department of Microbiology, Dong-A University, College of Medicine) ;
  • Song, Do-Young (Department of Clinical Pathology, Daegu Fatima Hospital) ;
  • Lee, Won-Kil (Clinical Pathology, Kyungpook National University School of Medicine) ;
  • Lee, Je-Chul (Department of Microbiology, Kyungpook National University School of Medicine)
  • Published : 2007.08.30

Abstract

Multi-drug resistant Pseudomonas aeruginosa has been implicated in a variety of serious therapeutic problems in clinical environments. Among the 968 P. aeruginosa isolates obtained from two hospitals in Daegu, Korea, we acquired 17 isolates that were resistant to all available tested antimicrobial agents, with the exception of colistin (colistin-only sensitive). We characterized the antimicrobial susceptibilities, $metallo-{\beta}-lactamases$, and epidemiological relatedness among the colistin-only sensitive P. aeruginosa isolates. All colistin-only sensitive isolates were positive in the modified Hodge test and imipenem-EDTA synergy test, thereby indicating the production of $metallo-{\beta}-lactamases$. 11 isolates from the secondary hospital and six isolates from the tertiary teaching hospital harbored $bla_{VIM-2}$ and $bla_{IMP-1}$, respectively. The pulsed-field gel electrophoretic analysis of the SpeI-digested DNA from P. aeruginosa isolates indicated that two different clones of colistin-only sensitive P. aeruginosa originated from each hospital, and had spread within the hospital environment. Overall, colistin-only sensitive P. aeruginosa was detected in Korea for the first time, but no pan-drug resistant bacteria were identified. Nationwide surveillance is required in order to monitor the emergence of colistin-only sensitive or pan-drug resistant bacteria.

Keywords

References

  1. Bush, K. 2001. New beta-lactamases in Gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin. Infect. Dis. 32, 1085-1089 https://doi.org/10.1086/319610
  2. Castanheira, M., M.A. Toleman, R.N. Jones, F.J. Schmidt, and T.R. Walsh. 2004. Molecular characterization of a $\beta$-lactamase gene, blaGIM-1, encoding a new subclass of metallo-$\beta$-lactamase. Antimicrob. Agents Chemother. 48, 4654-4661 https://doi.org/10.1128/AAC.48.12.4654-4661.2004
  3. Clinical and Laboratory Standards Institute. 2006. Performance standards for antimicrobial susceptibility testing, 16th informational supplement, M100-S16. Clinical and Laboratory Standards Institute, Wayne, Pa, USA
  4. Falagas, M.E. and I.A. Bliziotis. 2007. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int. J. Antimicrob. Agents 29, 630-636 https://doi.org/10.1016/j.ijantimicag.2006.12.012
  5. Falagas, M.E., I.A. Bliziotis, S.K. Kasiakou, G. Samonis, P. Athanassopoulou, and A. Michalopoulos. 2005. Outcome of infections due to pandrug-resistant (PDR) Gram-negative bacteria. BMC Infect. Dis. 5, 24-30 https://doi.org/10.1186/1471-2334-5-24
  6. Gales, A.C., R.N. Jones, and H.S. Sader. 2006. Global assessment of the antimicrobial activity of polymyxin B against 54,731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004). Clin. Microbiol. Infect. 12, 315-321 https://doi.org/10.1111/j.1469-0691.2005.01351.x
  7. Giamarellos-Bourboulis, E.J., H. Sambatakou, I. Galani, and H. Giamarellou. 2003. In vitro interaction of colistin and rifampin on multidrug-resistant Pseudomonas aeruginosa. J. Chemother. 15, 235-238 https://doi.org/10.1159/000069498
  8. Grundmann, H., C. Schneider, D. Hartung, F.D. Daschner, and T.L. Pitt. 1995. Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J. Clin. Microbiol. 33, 528-534
  9. Hancock, R.E. 1998. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative Gram-negative bacteria. Clin. Infect. Dis. 27 (Suppl. 1), S93-S99 https://doi.org/10.1086/514612
  10. Jarvis, W.R. and W.J. Martone. 1992. Predominant pathogens in hospital infections. J. Antimicrob. Chemother. 29 (Suppl. A), 19-24 https://doi.org/10.1093/jac/29.1.19
  11. Jeon, B.C., S.H. Jeong, I.K. Bae, S.B. Kwon, K. Lee, D. Young, J.H. Lee, J.S. Song, and S.H. Lee. 2005. Investigation of a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing OXA-23 $\beta$-lactamase in Korea. J. Clin. Microbiol. 43, 2241-2245 https://doi.org/10.1128/JCM.43.5.2241-2245.2005
  12. Lagatolla, C., E. Edalucci, L. Dolzani, M.L. Riccio, F. De Luca, E. Medessi, G.M. Rossolini, and E.A. Tonin. 2006. Molecular evolution of metallo-$\beta$-lactamase-producing Pseudomonas aeruginosa in a nosocomial setting of high-level endemicity. J. Clin. Microbiol. 44, 2348-2353 https://doi.org/10.1128/JCM.00258-06
  13. Landman, D., S. Bratu, M. Alam, and J. Quale. 2005. Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. J. Antimicrob. Chemother. 55, 954-957 https://doi.org/10.1093/jac/dki153
  14. Lee, J.H., C.H. Choi, H.Y. Kang, J.Y. Lee, J. Kim, Y.C. Lee, S.Y. Seol, D.T. Cho, K.W. Kim, D.Y. Song, and J.C. Lee. 2007. Differences in phenotypic and genotypic traits against antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species 13TU. J. Antimicrob. Chemother. 59, 633-639 https://doi.org/10.1093/jac/dkm007
  15. Lee, K., Y. Chong, H.B. Shin, Y.A. Kim, D. Yong, and J.H. Yum. 2001. Modified Hodge and EDTA-disk synergy tests to screen metallo-$\beta$-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 7, 88-91 https://doi.org/10.1046/j.1469-0691.2001.00204.x
  16. Lee, K., J.H. Yum, D. Yong, H.M. Lee, H.D. Kim, J.D. Docquier, G.M. Rossolini, and Y. Chong. 2005. Novel acquired metallo- $\beta$-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother. 49, 4485-4491 https://doi.org/10.1128/AAC.49.11.4485-4491.2005
  17. Livermore, D.M. 1995. $\beta$-Lactamase in laboratory and clinical resistance. Clin. Microb. Rew. 8, 557-584
  18. Livermore, D.M. 2001. Of Pseudomonas, porins, pumps and carbapenems. J. Antimicrob. Chemother. 47, 247-250 https://doi.org/10.1093/jac/47.3.247
  19. Murphy, T.A., A.M. Simm, M.A. Toleman, R.N. Jones, and T.R. Walsh. 2003. Biochemical characterization of the acquired metallo-$\beta$-lactamase SPM-1 from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 47, 582-587 https://doi.org/10.1128/AAC.47.2.582-587.2003
  20. Oh, E.J., S. Lee, Y.J. Park, J.J. Park, K. Park, S.I. Kim, M.W. Kang, and B.K. Kim. 2003. Prevalence of metallo-$\beta$-lactamase among Pseudomonas aeruginosa and Acinetobacter baumannii in a Korean University Hospital and comparison of screening methods for detecting metallo-$\beta$-lactamase. J. Microbiol. Methods 54, 411-418 https://doi.org/10.1016/S0167-7012(03)00090-3
  21. Ohara, M., S. Kouda, M. Onodera, Y. Fujiue, M. Sasaki, T. Kohara, S. Kashiyama, S. Hayashida, M. Kadono, H. Komatsuzawa, N. Gotoh, T. Usui, H. Itaha, M. Kuwabara, T. Yokoyama, and M. Sugai. 2007. Molecular characterization of imipenem-resistant Pseudomonas aeruginosa in Hiroshima, Japan. Microbiol. Immunol. 51, 271-277 https://doi.org/10.1111/j.1348-0421.2007.tb03908.x
  22. Poirel, L., T. Lambert, S. Turkoglu, E. Ronco, J. Gaillard, and P. Nordmann. 2001. Characterization of class 1 integrons from Pseudomonas aeruginosa that contain the blaVIM-2 carbapenemhydrolyzing $\beta$-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob. Agents Chemother. 45, 546-552 https://doi.org/10.1128/AAC.45.2.546-552.2001
  23. Poirel, L., T. Naas, D. Nicolas, L. Collet, S. Bellais, J.D. Cavallo, and P. Nordmann. 2000. Characterization of VIM-2, a carbapenem- hydrolyzing metallo-$\beta$-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44, 891-897 https://doi.org/10.1128/AAC.44.4.891-897.2000
  24. Poirel, L. and P. Nordmann. 2006. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin. Microbiol. Infect. 12, 826-836 https://doi.org/10.1111/j.1469-0691.2006.01456.x
  25. Rasmussen, B.A. and K. Bush. 1997. Carbapenem-hydrolyzing $\beta$-lactamases. Antimicrob. Agents Chemother. 41, 223-232
  26. Rossolini, G.M. and E. Mantengoli. 2005. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin. Microbiol. Infect. 11 (Suppl. 4), 17-32
  27. Tenover, F.C., R.D. Arbeit, R.V. Goering, P.A. Mickelsen, B.E. Murray, D.H. Persing, and B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsedfield gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33, 2233-2239
  28. Yong, D., Y.S. Choi, K.H. Roh, C.K. Kim, Y.H. Park, J.H. Yum, K. Lee, and Y. Chong. 2006. Increasing prevalence and diversity of metallo-$\beta$-lactamases in Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae from Korea. Antimicrob. Agents Chemother. 50, 1884-1886 https://doi.org/10.1128/AAC.50.5.1884-1886.2006