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A new approach based on implicit surface interpolation combined with domain decomposition is proposed for
Silling complex-shaped holes in a large polygon model. A surface was constructed by creating a smooth implicit
surface from an incomplete polygon model through which the actual surface would pass. The implicit surface was
defined by a radial basis function, which is a continuous scalar-value function over the domain R’. The generated
surface consisted of the set of all points at which this scalar function is zero. It was created by placing zero-valued
constraints at the vertices of the polygon model. The well-known domain decomposition method was used to treat
the large polygon model. The global domain of interest was divided into smaller domains in which the problem
could be solved locally. The LU decomposition method was used to solve the set of small local problems; the local
solutions were then combined using weighting coefficients to obtain a global solution. The validity of this new
approach was demonstrated by using it to fill various holes in large and complex polygon models with arbitrary

topologies.

1. Introduction

The hole filling process for large and complex incomplete
polygon models with arbitrary topologies is the most important
consideration in many fields related to the treatment of polygon
models. It is well-known that a complete finite element model is
required to obtain stable convergence and that unexpected holes bring
about numerical difficulties in computer-aided engineering. Holes
must be eliminated from polygon and finite element models because
they cause many geometric modeling and manufacturing problems in
fields such as computer graphics, reverse engineering and rapid
prototyping.

Various methods have been suggested for filling complex-shaped
holes in the area of computer graphics by creating an implicit surface
from an unorganized cloud of points." ™ A previous method devised
by the author’ based on an elastic finite element analysis and a
trimmed surface can be useful for filling various types of holes.
However, the method is limited by its large computation time, and the
implementation of the code is difficult due to the large stiffness
matrix created by large holes. A hole filling method based on an
implicit surface is faster and more robust.® However, when implicit
surfaces are used, there is a remarkable discrepancy between the
shapes of the neighboring elements and newly generated clements
that requires a novel advanced method.

Many studies have attempted to treat large models composed of
many polygons using an implicit surface scheme. Carr et al.’
attempted to apply an implicit surface to various types of large
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polygon models using the fast multipole method suggested by
Beatson. This approach, however, is not simple to implement due to
a somewhat complex mathematical algorithm and the enormous
amount of computation time required to treat large matrices. To
overcome this problem, Kojekine et al.” proposed a more efficient
numerical method by organizing the sparse matrix into a band-
diagonal sparse matrix that could be solved more efficiently.
However, the method was not robust for nonuniform distributions of
points. Ohtake ef al.® suggested a novel MPU implicit approach that
reconstructs an implicit surface from unorganized data sets containing
a huge number of points using weighted sums of different types of
piecewise quadratic functions.

In the present study, a complete model without holes is
reconstructed from a raw incomplete model using an implicit surface
scheme and the domain decomposition method. An implicit surface
is defined from the incomplete polygon model through which the
actual surface will pass. A mesh refinement and smoothing scheme
combined with a marching cube algorithm is also suggested to
visualize the reconstructed implicit surface.

2. Mathematical description of an implicit surface

In this study, a surface is reconstructed by creating a smooth
implicit surface from an incomplete polygon model using an efficient
interpolation method. The new surface is faithful to the input
polygon model, and many of the holes are eliminated by the process.
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The equation of an implicit surface can be defined as 2
N
()= X Ah(x—c;) + P(x), (M
Jj=1

where ¢; represents the locations of the constraints, A; indicates the
weights, ¢ 1is the basis function, and P (x) is a degree-one polynomial.
The basis function for interpolation, ¢, is the thin-plate radial basis
function defined by

#(x) = x |” log(l x |) - » @

After substituting the interpolation constraint conditions into equation
(1), the implicit surface interpolation problem can be written in the
following form:

N
h; =j§[/1j¢(ci —cj)+P(cl-), 3)
where h; = f(c;) for (1 £i < N). Here, &; is the scalar function value at
the / point. The function value is zero at points lying on the surface
and nonzero at off-surface points:
h; = f(e;)=0,i=1,...,n (on-surface points) (4a)
hi = f(e;) # 0.i=n+l, ..., N (off-surface points). (4b)

The weights A ; must satisfy the following condition®:

N N . N , N
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Substituting the constraint equations (3), (4), and (5) into equation (1),
we obtain a linear system of equations in matrix form as follows:
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where @ = ¢ (c; — ¢;). The unknowns /; and the coefficients of P (x)
can be obtained by solving the equations simultaneously using the
appropriate constraint conditions as function values at the points, as
shown in Fig. 1.

off-surface points

generated implicit surface

hn+1

on-surface points

Fig. 1 Generation of the implicit surface

3. Filling holes using the domain decomposition method

3.1 Generation of a local implicit surface
The basic idea of the domain decomposition method (DDM) is to

break up the 3D spatial domain occupied by the input polygon model
into several sub-domains, interpolate the points data in each sub-
domain separately, and then blend the local solutions together to
obtain a global solution using appropriate smooth blending functions
that sum to one everywhere in the domain. This is illustrated in Fig. 2.
The DDM can be applied to a large polygon model consisting of
millions of points to reduce the computation time required for
interpolation and visualization. The number of points allocated to
each sub-domain and the size of the overlapping zones between sub-
domains are important factors that can be controlled by adjusting the
size of each sub-domain. The adjusting scheme is an iterative process
in which ; is enlarged or reduced until the desired number of points
is reached. In this study, the desired number of points was set
between 30 and 200. For each sub-domain, a local implicit surface
was built using the LU decomposition method by solving a linear
system of equations defined by equation (6) of the previous section.

Fig. 2 Schematic diagram illustrating the concept of the domain
decomposition method

3.2 Generation of a global implicit surface using a blending
function

For each O, a local implicit surface equation is computed by
solving the equations simultaneously. The global solution is then
defined as a combination of the local solutions weighted by the
partition of unity functions w; as follows:

ND
F(P) = El Ji (P)w; (P) (73)
W; (P)
w; (P) = N,%‘ (7b)
> W (P)
j=t 7

The choice of weighting function determines the continuity between
the local solutions f; and the global solution F. In this study, a smooth
blending function that ensures C continuity over the domain €; was
introduced as follows:

4(P. -S, )T, - P,)

d;Py=1- I 5 (8a)
rex,y,z (T. -S,)
Wi(P) = —6dl-5 + 15d,-4 —10ar,.3 +1 (8b)

where S and T are the position vectors of two opposite corners of
each sub-domain and Wi is the weighting coefficient of the ™

sub-domain.

3.3 Generation of a polygon model from the global implicit
surface

Various visualization methods can be used to obtain a polygon
model from the global implicit surface defined by equation (7).
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Conventional techniques for visualizing implicit surface models
include polygonization, ray tracing, and volume rendering. From
these visualization methods, a mixed method including mesh
refinement and smoothing was selected to visualize the resulting
implicit surfaces. This is robust and fast because of its logically
stable algorithm based on the well-known marching cube algorithm,
which is the most common method used to create polygons for an
implicit surface. The 3D space occupied by an implicit surface is
divided into regular cells such as cubes. If the value of the implicit
function takes on a mixture of positive and negative values at the
corners of a given cube, then the implicit surface must pass through
the cube. At such cubes, a small set of polygons can be created that
approximate the shape of the surface within the cube, as shown in Fig.
3. If higher quality rendering is required, the size of the cubes must
be reduced in order to describe the original implicit surface with
sufficient accuracy. This implies an increase in computation time and
more memory usage.

In this work, a coarse polygon model was generated using the
marching cube algorithm. Then each triangle was refined into four
triangles.  Finally, a quality polygon model was obtained by
smoothing the existing model and projecting it onto the implicit
surface. The refinement and smoothing were repeated until the
desired level of accuracy was attained. For the smoothing, a node
was relocated to the averaged center of gravity of the neighboring
polygons to improve the quality of the polygon model as follows:

n

.ZlAiCi

=
P=—— ®
24

i=1

where P is the position vector of the new location, 4; is the area of the
i" triangle, C; is the center of gravity of the /" triangle, and  is the
number of triangles connected with the concerned point.

generated polygons

marching cube
implicit surface

+

\\ >§

l/ j/

Fig. 3 Schematic diagram illustrating the concept of the marching
cube algorithm

4. Results and Discussion

Various hole filling operations were performed for large and
complex polygon models with arbitrary topologies to verify the
effectiveness and validity of the proposed implicit surface scheme and
domain decomposition method. The main part of the developed code,
including the implicit surface interpolation and polygonization
programs, were constructed using the C language on an IBM
RS/6000 workstation, as shown in Table 1. The program for
visualizing the polygon model was constructed using Visual C"" and
OpenGL on a PC. Fig. 4 shows a flowchart of the details for
generating an implicit surface, and Fig. 5 shows the whole process of
generating the polygon model for visualization, including mesh

Table 1 Configuration of the developed system

Classification Hardware Software
0/S Language
IBM RS / 6000
R“O"S"”_mén 200 MHz Power CPU AIX c
& polygonization 128 MB RAM
Pentium 1.7 GHz Visual C
Visualization 512 MB RAM WINDOWS XP & OpenGL

Input the incomplete polygon model data
(set the point coordinates and calculate the
normal vectors using the topology data of the
polygon model)

Calculate the volume range
of the incomplete polygon model

(Xmin, Ymins Zminy Xmaxs Ymaxs Zmax)

Partition the space domain occupied by
the input polygon model
into overlapping sub-domains €;

Construct linear systems of equations
in each sub-domain
by substituting the constraint conditions

Solve the linear equations
using a numerical analysis
(LU decomposition method)

Write the implicit surface data for all
sub-domains containing coefficients of the
weighting functions and polynomial
(A; P; 1 <i<number of sub-domains)

Fig. 4 Flowchart showing the generation of an implicit surface

Input the required accuracy
and initial cube length (tol, cube _length)

Reconstruct the polygon model
using the marching cube algorithm

Merge the polygon model <
to calculate the topology data

Smooth the polygon model and project it onto
the implicit surface

v

Calculate the maximum deviation between the
polygon model and implicit surface

Yes

Refinement of the

polygon model

No

Write the polygon data

for visualization

Fig. 5 Flowchart of the overall reconstruction of the polygon model
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(b) generation of a polygon model using the marching cube
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algorithm from the generated implicit surface
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(a) overlap factor : 0% (b) overlap factor : 5%

(c) overlap factor : 15% (d) overlap factor : 25%

Fig. 7 Effect of the size of the overlapping zones
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(b) view of the polygon model after hole filling

Fig. 8 Filling holes in a dragon model

(a) incomplete polygon model before hole filling (b) polygon model after hole filling

Fig. 9 Detailed view of the dragon model
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(a) before hole filling

(b) after hole filling

Fig. 10 Filling holes in a sculpture model

smoothing, projection, and refinement. Fig. 6 illustrates the
application of this technique to a human head model that has many
holes. Fig. 6(a) shows a view of the original polygon model before
the hole filling. Fig. 6(b) shows a view of the coarse polygon model
generated from the reconstructed implicit surface using the marching
cube algorithm. Although the many holes that existed in the original
polygon model were eliminated, several poorly shaped triangles from
a mesh quality viewpoint still remained. As shown in Fig. 6(c), the
mesh quality improved remarkably after smoothing the polygon
model. Fig. 6(d) illustrates a view of the final polygon model after
refining and projecting onto the implicit surface. The proposed
smoothing and mesh refinement scheme yielded a satisfactory mesh
quality and geometric accuracy. Fig. 6(e) shows a detailed view of
one ear and illustrates that the proposed method effectively repaired
the mesh by filling the holes and improving the quality. Since the
original polygon model was composed of 14,562 triangles and 7,363
nodes, it would be impossible to generate an implicit surface using a
conventional implicit surface interpolation method based on radial

basis function (RBF). However, the computation time consumed for
the interpolation and polygonization was reduced dramatically by
introducing the domain decomposition method into the traditional
RBF. In this example, the spatial domain occupied by the original
polygon model was divided into 633 sub-domains for the
calculations; 55 seconds were required to interpolate the implicit
surface and 113 seconds were required to generate the polygon model.

From experience, we recommend using between 30 and 200
points in each sub-domain to ensure stable reconstruction of the
implicit surface. If the number of allocated points in some sub-
domains is less than 30, the local interpolation f; can lead to
unexpected results. If the number of allocated points exceeds 200,
the computation time will increase remarkably. Therefore, we
implemented an automatic adjusting scheme for the sub-domain
size to allocate an optimum number of points to each sub-domain.

Fig. 7 illustrates the effect of the size of the overlapping zone.
Fig. 7(a) shows interpolated results for a 0% overlap factor, i.e.,
with no overlapping zones between sub-domains. As expected, it
was not difficult to distinguish the boundary zones from
neighboring sub-domains due to discontinuities between the sub-
domains. A larger value of the overlap factor yielded a more stable
and continuous reconstructed implicit surface, as shown in Fig.
7(b)~(d). Although the optimum overlap factor varies according to
the characteristics of the input polygon model, a factor of about
10% was sufficient to obtain stable interpolation results.

Finally, the robustness and effectiveness of the proposed
methods were verified using larger polygon models. Fig. 8(a)
shows a view of an original model that was composed of 154,246
nodes and 306,835 triangles before the hole filling process. The
implicit surface was reconstructed by dividing the 3D spatial
domain into 3,398 sub-domains; 8 minutes were required for the
interpolation and 16 minutes were required to reconstruct the final
polygon model, shown in Fig. 8(b), composed of 340,945 nodes
and 680,480 triangles. As shown in Fig. 9, the many holes
scattered in the original polygon model were successfully
eliminated and the reconstructed polygon model was much
smoother compared to the original polygon model. Fig. 10 presents
the results of the hole filling procedure for a sculpture model
composed of 368,746 nodes and 623,434 triangles. The implicit
surface was reconstructed by dividing the space into 4,734 sub-
domains; 16 minutes were required for the interpolation and 35
minutes were required for the polygonization of the final model,
shown in Fig. 10(b), composed of 437,605 nodes and 985,600
triangles. Once again, the various holes scattered in the original
scanned polygon model were successfully eliminated.

5. Conclusions

A novel shape reconstruction method was proposed to fill many
types of holes that are often found scattered throughout a polygon
model. The proposed method used an implicit surface scheme and
the domain decomposition method. A new surface was reconstructed
by creating a smooth implicit surface from the incomplete polygon
model through which the actual surface would pass. Then a mixed
method of mesh refinement and smoothing was used to efficiently
visualize the resulting implicit surface. The 3D spatial domain
occupied by the input polygon model was divided into several sub-
domains. Local solutions were then obtained by interpolating points
allocated in each sub-domain separately. Finally, the local solutions
were blended together using a smooth blending function, forming a
partition of unity to obtain a global solution. The numerical results
demonstrated that the proposed method could be used to fill holes in
a large polygon model using a reasonable expenditure of computing
time and with sufficient accuracy, irrespective of the hole size and
complexity of the hole shape.
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