DOI QR코드

DOI QR Code

Synthesis of PSZ-seeding Mullite Composite from Metal Alkoxides and Its Characteristics of Sintered Body

금속 알콕사이드로부터 PSZ-seeding Mullite 복합체의 합성 및 소결체의 특성

  • Yim, Going (Dept. of Nanopolym. Mat. Eng., Col. of Eng., Paichai University) ;
  • Yim, Chai-Suk (Hyosung Corp. R&D.B. Labs, Cent. Res. Inst.) ;
  • Kim, Young-Ho (Doowon C&C Co., Tech. R&D Center)
  • 임굉 (배재대학교 나노고분자재료공학과) ;
  • 임재석 (㈜효성 기술원 중앙연구소) ;
  • 김영호 (㈜두원 C&C 기술연구센터)
  • Published : 2007.01.27

Abstract

Mullite-PSZ composite was prepared by sol-gel method using $Al(sec-OC_4H_9)_3,\;Si(OC_2H_5)_4,\;ZrOCl_2\;8H_2O\;and\;Y_2O_3$. The sinterability ana mechanical properties of powder compacts sintered at $1,650^{\circ}C$ for 4 hrs were investigated for various PSZ contents. In result Al-Si spinel formed at $980^{\circ}C$ from amorphous dried gel, and zirconia as well as mullite crystal formed above $1,200^{\circ}C$. The sintered body was densified to $97{\sim}98%$ except the specimen containing 25vol% PSZ which showed the relative density of about 95% obtained by sintering at $1,650^{\circ}C$ for 4 h. The flexural strength of the sintered body was a maximum value of 290 MPa in 20 vol% PSZ, which was also considerably larger than the value of 200 MPa without PSZ. The value of the fracture toughness increased linearly with increase of PSZ content and showed a maximum value of $4.3MPam^{1/2}$ in 25 vol% PSZ, Namely this value was remarkably larger than the $value(2.6MPam^{1/2})$ of pure mullite without PSZ.

Keywords

References

  1. F. J. Klug, S. Prochazka and R. H. Doremus, Ceram. Trans., 6, 15 (1990)
  2. I. A. Aksay and J. A. Pask, J. Am. Ceram. Soc., 58, 507 (1975) https://doi.org/10.1111/j.1151-2916.1975.tb18770.x
  3. P. C. Dokko, J. A. Pask and K. S. Mazdiyasni, J. Am. Ceram. Soc., 60, 150 (1977) https://doi.org/10.1111/j.1151-2916.1977.tb15492.x
  4. S. Kanzaki, H. Tabata, T. Kumazawa and S. Ohta, J. Am. Ceram. Soc., 68, C6-C7 (1985) https://doi.org/10.1111/j.1151-2916.1985.tb15252.x
  5. P. A. Lessing, R. S. Gorden and K. S. Mazdiyasni, J. Am. Ceram. Soc., 58, 149 (1975) https://doi.org/10.1111/j.1151-2916.1975.tb19585.x
  6. S. Prochazka, J. S. Wallace and N. Claussen, J. Am. Ceram. Soc., 66, C125-C127 (1983) https://doi.org/10.1111/j.1151-2916.1983.tb11004.x
  7. J. S. Moya and P. Miranzo, in High Tech. Ceram., ed. by P. Vincenzini (Elsevier Science Publishers B. V., Amsterdam, 1987), p. 1317
  8. Q. M. Yuan, J. Q. Tan and Z. G. Jin, J. Am. Ceram. Soc., 69, 265 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07422.x
  9. J. S. Moya and M. I. Osendi, J. Mater. Sci., 19, 2909 (1984) https://doi.org/10.1007/BF01026966
  10. D. J. Green, R. H. J. Hannink and M. V. Swain, Transformation Toughening of Ceramics, pp. 57-93, CRC Press Inc., Boca Raton, Florida (1989)
  11. R. C. Garvie, in Advances in Ceramics, Vol. 3, ed. by A. H. Heur and L. F. Hobbs Am. Ceram. Soc., Columbus, OH, 1981), p. 465
  12. A. H. Heur and M. Ruhle, in Advances in Ceramics, Vol. 12, ed. by N. Claussen et al., Am. Ceram. Soc., Columbus, OH, (1984), p. 1
  13. E. I. Di Rupo and M. R. Anseau, J. Mater. Sci., 15, 114 (1980) https://doi.org/10.1007/BF00552434
  14. N. Claussen and J. Jahn, J. Am. Ceram. Soc., 63, 228 (1980) https://doi.org/10.1111/j.1151-2916.1980.tb10700.x
  15. G. De Portu and J. W. Henny, Brit. Ceram. Trans. J., 83, 69 (1984)
  16. J. S. Moya and M. I. Osendi, J. Mater. Sci. Lett., 2, 599 (1983) https://doi.org/10.1007/BF00719870
  17. J. M. Rincon, T. R. Dinger, G. Thomas, J. S. Moya and M. I. Osendi, Acta. Metal., 35, 1155 (1987) https://doi.org/10.1016/0001-6160(87)90064-2
  18. H. Shiga, M. G. M. U. Ismail and K. Katayama, J. Ceram. Soc. Jpn., Int., Ed., 99, 782 (1991)
  19. M. G. M. U. Ismail, Z. Nakai and S. Somiya, in Advances in Ceramics, Vol. 24, ed. by S. Somiya, N. Yamamoto and H. Yanagida (Am. Ceram. Soc., Westerville, OH, 1988), p. 553
  20. K. Rundgren, P. Elfving, R. Pompe, K. P. D. Lagerlof and B. Larsson, in Advances in Ceramics, Vol. 24, ed by S. Somiya, N. Yamamoto and H. Yanagida, (Am. Ceram. Soc., Westerville, OH, 1988), p. 1043
  21. S. Lathabai, D. G. Hay, F. Wagner and N. Claussen, J. Am. Ceram. Soc., 79, 248 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb07905.x
  22. M. Imose, A. Ohta, Y. Takano, M. Yoshinaka, K. Hirota and O. Yamaguchi, J. Am. Ceram. Soc., Inc., 81, 1050 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02447.x
  23. N. Claussen, Master. Sci. Eng., 71, 23 (1985) https://doi.org/10.1016/0025-5416(85)90203-4
  24. I. A. Aksay, D. M. Dabbs and M. Sarikaya, J. Am. Ceram. Soc., 74, 2343 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb06768.x
  25. A. G. Evans and E. A. Charles, J. Am. Ceram. Soc., 59, 371 (1976) https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
  26. M. G. M. U. Ismail, Z. Nakai and S. Somiya, in Advances in Ceramics, Vol. 24, ed by S. Somiya, N. Yamamoto and H. Yanagida (Am. Ceram. Soc., Westerville, OH, 1988), p. 119
  27. B. Kebbel and A. H. Heuer, J. Am. Ceram. Soc., 69, 213(1986)
  28. R. C. Garvie and P. S. Nicholson, J. Am. Ceram. Soc., 55, 303 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11290.x
  29. A. H. Heuer, N. Claussen, W. N. Kriven and R. Ruhle, J. Am. Ceram. Soc., 65, 642 (1982) https://doi.org/10.1111/j.1151-2916.1982.tb09946.x
  30. R. C. Garvie, J. Phys. Chem., 69, 1238 (1965) https://doi.org/10.1021/j100888a024
  31. F. F. Lange, J. Mater. Sci., 17, 225 (1982) https://doi.org/10.1007/BF00809057
  32. I. S. Kim, J. S. Park, M. W. Lee, B. H. Lee and Y.Y. So, J. Kor. Ceram. Soc., 35, 878 (1998)
  33. J. Wang, J. Mater. Sci., 23, 804 (1988) https://doi.org/10.1007/BF01153970
  34. Q. M. Yuan, J. Q. Tan and Z. G. Jin, J. Am. Ceram. Soc., 69, 265 (1986) https://doi.org/10.1111/j.1151-2916.1986.tb07422.x