Expression Profiles and Pathway Analysis in HEK 293 T Cells Overexpressing HIV-1 Tat and Nucleocapsid Using cDNA Microarray

  • Park, Seong-Eun (Department of Biological Science, Sookmyung Women's University) ;
  • Lee, Min-Joo (Department of Biological Science, Sookmyung Women's University) ;
  • Yang, Moon-Hee (Department of Biological Science, Sookmyung Women's University) ;
  • Ahn, Ka-Young (Department of Biological Science, Sookmyung Women's University) ;
  • Jang, Soo-In (Department of Pathology, College of Medicine, the Catholic University of Korea) ;
  • Suh, Young-Ju (Department of Biological Science, Sookmyung Women's University) ;
  • Myung, Hee-Joon (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • You, Ji-Chang (Department of Pathology, College of Medicine, the Catholic University of Korea) ;
  • Park, Jong-Hoon (Department of Biological Science, Sookmyung Women's University)
  • Published : 2007.01.31

Abstract

Human immunodeficiency virus type 1 (HIV-1) infections are responsible for a substantial number of deaths annually and represent a significant threat to public health. According to the latest study, the Tat (Transactivator of transcription) protein is essential in transcription and replication of viral genes, and is among the early expression genes involved in the life cycle of HIV. The virion NC (nucleocapsid) plays an important role in early mRNA expression and contributes to the rapid viral replication that occurs during HIV-1 infection. Therefore, we attempted to elucidate the relationship between the Tat protein and nucleocapsid protein. In a comparison of two independently prepared and hybridized samples, flag NC overexpressed HEK 293T cells and pTat overexpressed HEK 293T cells, and hybridization showed the differences in expression in each case. Among the microarray results confirmed with real-time reverse transcriptase assay, twelve genes were identified to be involved according to their gene expression profiles. Of approximately 8,208 human genes that were analyzed, we monitored candidate genes that might have been related to NC and Tat genes from gene expression profiles. Additionally, the pathways could be viewed and analyzed through the use of Pathway Studio software. The pathways from the gene list were built and paths were found among the molecules/cell objects/processes by the curation method.

Keywords

References

  1. Accola, M. A., B. Strack, amd H. G. Gottlinger. 2000. Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J Virol. Res. 74: 5395-5402 https://doi.org/10.1128/JVI.74.12.5395-5402.2000
  2. Baggiolini, M., B. Dewald, and B. Moser. 1994. Interleukin- 8 and related chemotactic cytokines-CXC and CC chemokines. Adv. Immunol. Res. 55: 97-179
  3. Brigati, C., M. Giacca, D. M. Noonan, and A. Albini. 2003. HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett. Res. 220: 57-65 https://doi.org/10.1016/S0378-1097(03)00067-3
  4. Clemens, M. J., M. Bushell, I. W. Jeffrey, V. M. Pain, and S. J. Morley. 2000. Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. Cell Death Differ. Res. 7: 603-615 https://doi.org/10.1038/sj.cdd.4400695
  5. de la Fuente, C., F. Santiago, L. Deng, C. Eadie, I. Zilberman, K. Kehn, A. Maddukuri, S. Baylor, K. Wu, C. G. Lee, A. Pumfery, and F. Kashanchi. 2002. Gene expression profile of HIV-1 Tat expressing cells: A close interplay between proliferative and differentiation signals. BMC Biochem. 3: 14
  6. Ensoli, B., L. Buonaguro, G. Barillari, V. Fiorelli, R. Gendelman, R. A. Morgan, P. Wingfield, and R. C. Gallo. 1993. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J. Virol. Res. 67: 277-287
  7. Fotheringham, J., M. Mayne, C. Holden, A. Nath, and J. D. Geiger. 2004. Adenosine receptors control HIV-1 Tat-induced inflammatory responses through protein phosphatase. Virol. Res. 327: 186-195 https://doi.org/10.1016/j.virol.2004.07.007
  8. Gallo, R. C., A. Burny, and D. Zagury. 2002. Targeting Tat and IFN(alpha) as a therapeutic AIDS vaccine. DNA Cell Biol. Res. 21: 611-618 https://doi.org/10.1089/104454902760330147
  9. Gerszten, R. E., E. A. Garcia-Zepeda, Y. C. Lim, M. Yoshida, H. A. Ding, M. A. Gimbrone Jr., A. D. Luster, F. W. Luscinskas, and A. Rosenzweig. 1999. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nat. Res. 398: 718-723
  10. Gottlinger, H. G., J. G. Sodroski, and W. A. Haseltine. 1989. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 86: 5781-5785
  11. Khan, R. and D. P. Giedroc. 1992. Recombinant human immunodeficiency virus type 1 nucleocapsid (NCp7) protein unwinds tRNA. J. Biol. Chem. Res. 267: 6689-6695
  12. Kim, B. S., S. J. Kang, S. B. Lee, W. Hwang, and K. S. Kim. 2005. Simple method to correct gene-specific dye bias from partial dye swap information of a DNA microarray experiment. J. Microbiol. Biotechnol. 15: 1377-1383
  13. Koch, A. E., P. J. Polverini, S. L. Kunkel, L. A. Harlow, L. A. DiPietro, V. M. Elner, S. G. Elner, and R. M. Strieter. 1992. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Sci. Res. 258: 1798-1801
  14. Ko, K. S., J. Y. Lee, J. H. Song, J. Y. Baek, W. S. Oh, J. S. Chun, and H. S. Yoon. 2006. Screening of essential genes in Staphylococcus aureus N315 using comparative genomics and allelic replacement mutagenesis. J. Microbiol. Biotechnol. 16: 623-632
  15. Lane, B. R., K. Lore, P. J. Bock, J. Andersson, M. J. Coffey, R. M. Strieter, and D. M. Markovitz. 2001. Interleukin-8 stimulates human immunodeficiency virus type 1 replication and is a potential new target for antiretroviral therapy. J Virol. Res. 75: 8195-8202 https://doi.org/10.1128/JVI.75.17.8195-8202.2001
  16. Larsen, C. G., A. O. Anderson, E. Appella, J. J. Oppenheim, and K. Matsushima. 1989. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Sci. Res. 243: 1464-1466
  17. Lee, N., R. J. Gorelick, and K. Musier-Forsyth. 2003. Zinc finger-dependent HIV-1 nucleocapsid protein-TAR RNA interactions. Nucleic Acids. Res. 31: 4847-4855 https://doi.org/10.1093/nar/gkg679
  18. Lee, S. G., Y. J. Kim, S. I. Han, Y. K. Oh, S. H. Park, Y. H. Kim, and K. S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraint-based metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998
  19. Li, S., N. Sonenberg, A.-C. Gingras, M. Peterson, S. Avdulov, V. A. Polunovsky, and P. B. Bitterman. 2002. Translational control of cell fate: Availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency. Mol. Cell. Biol. Res. 22: 2852-2861
  20. Lockhart, D. J., H. Dong, M. C. Byrne, M. T. Follettie, M. V. Gallo, M. S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton, and E. L. Brown. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. Res. 14: 1675-1680 https://doi.org/10.1038/nbt1296-1675
  21. Neuveut, C., R. M. Scoggins, D. Camerini, R. B. Markham, and K. T. Jeang. 2003. Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J. Biomed. Sci. Res. 10: 651-660 https://doi.org/10.1007/BF02256316
  22. Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Sci. Res. 270: 467-470
  23. Tan, A., P. Bitterman, N. Sonenberg, M. Peterson, and V. Polunovsky. 2000. Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1. Oncogene Res. 19: 1437-1447 https://doi.org/10.1038/sj.onc.1203446
  24. Wain-Hobson, S., P. Sonigo, O. Danos, S. Cole, and M. Alizon. 1985. Nucleotide sequence of the AIDS virus, LAV. Cell. Res. 40: 9-17 https://doi.org/10.1016/0092-8674(85)90303-4
  25. Yoshimura, T., K. Matsushima, S. Tanaka, E. A. Robinson, E. Appella, J. J. Oppenheim, and E. J. Leonard. 1987. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl. Acad. Sci. USA 84: 9233-9237