DOI QR코드

DOI QR Code

POLYMERIZATION SHRINKAGE OF COMPOSITE RESINS CURED BY VARIABLE LIGHT INTENSITIES

가변 광도 중합에 따른 복합레진의 중합수축에 관한 연구

  • Lim, Mi-Young (Department of Conservative Dentistry, School of Dentistry, Dankook University) ;
  • Cho, Kyung-Mo (Department of Conservative Dentistry, School of Dentistry Kangnung National University) ;
  • Hong, Chan-Ui (Department of Conservative Dentistry, School of Dentistry, Dankook University)
  • 임미영 (단국대학교 치과대학 보존학교실) ;
  • 조경모 (강릉대학교 치과대학 치과보존학교실) ;
  • 홍찬의 (단국대학교 치과대학 보존학교실)
  • Published : 2007.01.31

Abstract

The purpose of this study was to compare the effect of exponential curing method with conventional curing and soft start curing method on polymerization shrinkage of composite resins. Three brands of composite resins (Synergy Duo Shade, Z250, Filtek Supreme) and three brands of light curing units (Spectrum 800, Elipar Highlight, Elipar Trilight) were used. 40 seconds curing time was given. The shrinkage was measured using linometer for 90 seconds. The effect of time on polymerization shrinkage was analysed by one-way ANOVA and the effect of curing modes and materials on polymerization shrinkage at the time of 90s were analysed by two-way ANOVA. The shrinkage ratios at the time of 20s to 90s were taken and analysed the same way. The results were as follows : 1. All the groups except Supreme shrank almost within 20s Supreme cured by soft start and exponential curing had no further shrinkage after 30s (p < 0.05). 2. Statistical analysis revealed that polymerization shrinkage varied among materials (p = 0.000) and curing modes (p = 0.003). There was no significant interaction between material and curing mode. 3. The groups cured by exponential curing showed the statistically lower polymerization shrinkage at 90s than the groups cured by conventional curing and soft start curing (p < 0.05). 4. The initial shrinkage ratios of soft start and exponential curing were statistically lower than conventional curing (p < 0.05). From this study, the use of low initial light intensities may reduce the polymerization rate and, as a result, reduce the stress of polymerization shrinkage.

본 연구는 광중합형 복합레진 중합 시 기존의 중합법과 가변광도 중합형인 soft start 중합법 및 exponential 중합법 간의 중합수축효과를 비교하고자 하였다. 본 연구를 위해 3종의 복합레진 (Synergy Duo Shade, Z250, Filtek Supreme) 및 3종의 광조사기 (Spectrum 800, Elipar Highlight, Elipar Trilight)를 사용하였다. 총 중합시간은 40초로 일정하게 유지하였으며, 선형 중합수축률의 측정은 linometer를 이용하였으며, 90초간의 선형 수축률을 0.5초 간격으로 측정하였다. 재료별로 각 중합 방법별 시간에 따른 중합수축률을 one-way ANOVA test로 분석하여 최종 중합수축률에 도달하는 시간을 산출하였고, 90초 후 최종 선형 중합수축률을 two-way ANOVA test를 이용하여 재료, 광조사 방법, 재료 및 광조사 방법의 교호작용이 중합수축에 미치는 영향이 있는지를 검증하였다. 또한 90초까지의 선형 중합수축률에 대한 20초까지의 선형 중합수축률의 비를 two-way ANOVA로 비교하고, 각각의 통계치를 95% Scheffe test로 검증하였는바, 다음과 같은 결과를 얻었다 1. Supreme을 제외한 다른 군에서는 재료 및 광조사 방법에 관계없이 대부분의 중합 수축이 광조사 후 20초 이내에 이루어졌다 (p < 0.05). 2. 90초 후, 최종 중합수축률은 재료 (p = 0.000)와 광조사 방법 (p = 0.003) 모두 유의성 있는 영향을 끼쳤으나, 재료와 광조사 방법 상호간의 작용은 영향이 없었다. 3. 90초 후 최종 중합수축률은 총 광에너지가 가장 낮은 exponential 중합법에서 유의성 있게 낮았다 (p < 0.05). 4. 20초까지의 초기 수축률은 soft start와 exponential중합법 등 가변광도 중합이 conventional 중합법에 비하여 유의성 있게 낮은 수축률을 보였다 (p < 0.05). 본 실험 결과만을 토대로 볼 때, 가변광도 중합법은 초기 중합수축 속도를 감소시켜 수축응력을 감소시킨다고 볼 수 있다. 그러나 총 조사 광에너지의 차이로 인해 그 물리적 성질에 영향이 있을 수 있으므로 향후 이에 대한 더 많은 고찰이 필요할 것으로 사료된다.

Keywords

References

  1. Sakaguchi RL, Peters MCRB, Nelson SR. Douglas W. Poort HW. Effects of polymerization contraction in composite restorations. J Dent 20: 178-182. 1992 https://doi.org/10.1016/0300-5712(92)90133-W
  2. Attin T. Buchalla W. Kielbassa AM, Helwig E. Curing shrinkage and volumetric changes of resin modified glass ionomer restorative materials. Dent Mater 11:359-389. 1995 https://doi.org/10.1016/0109-5641(95)80035-2
  3. de Gee AJ. Feilzer AJ. Davidson CL. True linear polymerization shrinkage of unfilled resins and composite determined with a linometer. Dent Mater 9: 11-14. 1993 https://doi.org/10.1016/0109-5641(93)90097-A
  4. Venhoven BA. de Gee AJ, and Davidson CL. Polymerization contraction and conversion of light curing BisGMA based methacrylate resins. Biomater 14:871-75. 1993 https://doi.org/10.1016/0142-9612(93)90010-Y
  5. Davidson CL, Feilzer AJ. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 25:435-440, 1997 https://doi.org/10.1016/S0300-5712(96)00063-2
  6. Dennison JB. Yam an P, Seir R. Hamilton JC. Effects of variable light intensity on composite shrinkage. J Prosthet Dent 84:499-505, 2000 https://doi.org/10.1067/mpr.2000.110494
  7. Stansbury JW. Synthesis and evaluation of new oxaspiro monomers for double ring opening polymerization. J Dent Res 71: 1408-1412, 1992 https://doi.org/10.1177/00220345920710070901
  8. Lim BS. Lee YG, Kim CW. Polymerization shrinkage stress. J Korean Res Sac Dent Mater 28(2) :81-94, 2001
  9. Silikas N, Eliades G. Watts DC. Light intensity effects on resin composite degree of conversion and shrinkage strain. Dent Mater 16(4): 292-296, 2000 https://doi.org/10.1016/S0109-5641(00)00020-8
  10. Lim BS, Ferracane JL, Sakaguchi RL, Codon JR. Reduction of polymerization contraction stress for dental composites by two step light activation. Dent Mater 18:436-444. 2002 https://doi.org/10.1016/S0109-5641(01)00066-5
  11. Yoon TH. Lee YG, Lim BS, Kim CW. Effect of irradiation method on the polymerization shrinkage of dental esthetic restorative materials. J Korean Res Sac Dent Mater 27 (4): 307-315, 2000
  12. Versluis A. Tantbirojn D. Douglas Wh. Do dental composites always shrink toward the light? J Dent Res 77:1435-1445, 1998 https://doi.org/10.1177/00220345980770060801
  13. Uno S, Asmussen E. Marginal adaptation of a restorative resin polymerized at reduced rate. Scand J Dent Res 99:440-444. 1991
  14. Uterbrink GL, Muessner R. Influence of light intensity on two restorative systems. J Dent 23:183-189, 1995 https://doi.org/10.1016/0300-5712(95)93577-O
  15. Goracci G, Mori G, de' Martinis LG. Curing light intensity and marginal leakage of resin composite restorations. Quint Int 27: 355-362, 1996
  16. Kanca J, Suh BI. Pulse activation : Reducing resin based composite contraction stresses at the enamel cavosurface margins. Am J Dent 12:107-112, 1999
  17. Yap AUJ, Soh MS, Siow KS. Post gel shrinkage with pulse activation and soft start polymerization. Operative Dent 27:81-7, 2002
  18. Lee YG, Yoon TH. Kim CW. A Study on the polymerization shrinkage and thermal expansion of dental esthetic restorative materials. J Korean Res Soc Det Mater 27(2): 171-179, 2000
  19. Iga M, Takeshige F, Ui T, Torii M. Tsuchitani Y. The relationship between polymerization shrinkage and the inorganic filler content of light cured composites. Dent Mater J 10:38-45, 1991 https://doi.org/10.4012/dmj.10.38
  20. Bandyopadhyay S. A study of the volumetric setting shrinkage of some dental materials. J Biomed Mat Res 16: 135-144, 1982 https://doi.org/10.1002/jbm.820160206
  21. Hay JN, Shortall AC. Polymerization contraction and reaction kinetics of three chemically activated restorative resins. J Dent 16:172-176, 1988 https://doi.org/10.1016/0300-5712(88)90031-0
  22. Grajower R, Guleman M. Dimensional changes during setting of a glass ionomer filling material. Quint Int 20:505-511, 1989
  23. Dauviller B, Aarnts M, Feilzer AJ. Developments in shrinkage control of adhesive restoratives. J Esthet Dent 12:291-299, 2000 https://doi.org/10.1111/j.1708-8240.2000.tb00238.x
  24. Park SH. Krejci I, Lutz F. Consistency in the amount of linear polymerization shrinkage in syringe type composites. Dent Mater 15:442-446, 1999 https://doi.org/10.1016/S0109-5641(99)00072-X
  25. Bouschlicher MR, Vargas MA, Boyer DB. Effect of composite type, light intensity, configuration factor and laser polymerization on polymerization contraction forces. Am J Dent 10:88-96, 1997
  26. Feilzer AJ, de Gee AJ, Davidson CL. Quantitative determination of stress reduction by flow in composite restorations. Dent Mater 6: 167-171. 1990 https://doi.org/10.1016/0109-5641(90)90023-8
  27. Dauviller BS, Aarnts MP, Feilzer AJ. Developments in shrinkage control of adhesive restorations. J Esthet Dent 11:291-299, 2000
  28. Davidson CL, Davidson-Kaban SS. Handling of mechanical stresses in composite restorations. Dent update 25:274-279. 1998
  29. Koran P, Kurschner R. Effect of sequential versus continuous irradiation of a light cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization. Am. J Dent 11(1):17-22, 1998
  30. Bouschlicher MR, Rueggeberg FA. Effect of ramped light intensity on polymerization force and conversion in a photo activated composite. J Esthet Dent 12:328-339, 2000 https://doi.org/10.1111/j.1708-8240.2000.tb00242.x
  31. Kinomoto Y, Torii M, Takeshige F, Ebisu S. Comparison of polymerization contraction stresses between self and light curing composites. J Dent 27:383-389, 1999 https://doi.org/10.1016/S0300-5712(98)00065-7
  32. Peutzfeldt A. Resin composites in dentistry : the monomer systems. Eur J Oral Sd 105: 97-116, 1997 https://doi.org/10.1111/j.1600-0722.1997.tb00188.x

Cited by

  1. Effect of the exponential curing of composite resin on the microtensile dentin bond strength of adhesives vol.35, pp.2, 2010, https://doi.org/10.5395/JKACD.2010.35.2.125