DOI QR코드

DOI QR Code

산 완충용액의 pH 및 유산의 농도가 인공치근우식의 형성에 미치는 영향

THE INFLUENCE OF pH AND LACTIC ACID CONCENTRATION ON THE FORMATION OF ARTIFICIAL ROOT CARIES IN ACID BUFFER SOLUTION

  • 오현석 (연세대학교 치과대학 치과보존학교실) ;
  • 노병덕 (연세대학교 치과대학 치과보존학교실) ;
  • 이찬영 (연세대학교 치과대학 치과보존학교실)
  • Oh, Hyun-Suk (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Roh, Byoung-Duck (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Chan-Young (Department of Conservative Dentistry, College of Dentistry, Yonsei University)
  • 발행 : 2007.01.31

초록

치근 우식증은 복합적인 요인에 의해 발생되는 질환으로 고령 인구의 증가로 최근 증가추세에 있으나 아직까지는 병소 깊이, 상아질 탈회의 정도 및 양상, collagen의 파괴 정도 및 수산화인회석 결정 변화에 대한 탈회 완충액의 조직학적 연구는 미비한 실정이다. 본 연구는 우식 형성에 영향을 주는 산 완충용액 내의 pH와 유산의 농도변화에 따른 치근 상아질 우식 병소의 진행에 미치는 변화를 편광현미경을 이용하여 관찰하고 관찰된 우식 병소층의 수산화인회석의 결정 형태 변화를 주사전자현미경으로 관찰하여 탈회 과정을 살펴보고자 세 가지 pH (4.3, 5.0, 5.5)군과 각각의 pH군에 세 가지 유산의 농도 (25mM, 50 mM, 100 mM)를 이용하여 인공치근 우식을 형성한 후 비교 분석하여 다음과 같은 결과를 얻었다. 1. 편광현미경 소견에서 우식 병소의 깊이는 pH보다는 유산의 농도에 의해 더 영향을 많이 받았다. 2. 주사전자현미경 소견에서 유산의 농도가 높아질수록 그리고 pH가 낮아질수록 수산화인회석 결정의 소실이 더 많이 진행되었다. 3. 탈회는 수산화인회석 결정의 변연부가 소실되며 결정 cluster내 결정의 숫자 및 크기가 감소하였고 결정 cluster 사이의 간격이 넓어지는 양상으로 관찰되었다. 4. 표면층에서의 주사전자현미경 관찰 시 유산의 농도가 높아질록 수산화인회석 결정 cluster의 형태는 소실되고 콜라겐 섬유 표면에 수산화인회석 결정의 용해, 재결합된 양상으로 관찰되었다. 5. 탈회 과정에 대한 주사전자현미경 관찰 시 상아질의 탈회는 단순히 탈회만 독립적으로 일어나는 과정이 아닌 탈회와 재광화가 동시에 일어나는 양상으로 관찰되었다. 이상의 결과 산 완충용액 내의 유산의 농도가 높아지고 pH가 낮아질수록 탈회의 속도가 증가하고 탈회의 과정은 수산화인회석 결정 cluster의 표면으로부터 진행되며 시간이 경과함에 따라 수산화인회석 결정의 형태는 원형 또는 타원형에서 불규칙한 형태로 변화되었다.

The purpose of this study is to compare and to evaluate the effect of pH and lactic acid concentration on the progression of artificial root caries lesion using polarizing microscope, and to evaluate the morphological changes of hydroxyapatite crystals of the demineralized area and to investigate the process of demineralization using scanning electron microscope. Artificial root caries lesion was created by dividing specimens into 3 pH groups (pH 4.3, 5.0, 5.5), and each pH group was divided into 3 lactic acid concentration groups (25 mM, 50 mM, 100 mM). Each group was immersed in acid buffer solution for 5 days and examined. The results were as follows : 1. Under polarized microscope, the depth of lesion was more effected by the lactic acid concentration rather than the pH. 2. Under scanning electron microscope, dissolution of hydroxyapatite crystals were increased as the lactic acid concentration increased and the pH decreased. 3. Demineralized hydroxyapatite crystals showed peripheral dissolution and decreased size and number within cluster of hydroxyapatite crystals and widening of intercluster and intercrystal spaces as the pH decreased and the lactic acid concentration increased. 4. Under scanning electron microscope evaluation of the surface zone, clusters of hydroxyapatite crystals were dissolved, and dissolution and reattachment of crystals on the surface of collagen fibrils were observed as the lactic acid concentration increased. 5. Under scanning electron microscope, demineralizatlon of dentin occurred not only independently but also with remineralization simultaneously. In conclusion, the study showed that pH and lactic acid concentration influenced the rate of progression of the lesion in artificial root caries. Demineralization process was progressed from the surface of the cluster of hydroxyapatite crystals and the morphology of hydroxyapatite crystals changed from round or elliptical shape into irregular shape as time elapsed.

키워드

참고문헌

  1. Darby ET. The etiology of caries at the gum margin and labial and buccal surfaces of the teeth. Dental Cosmos 26:218-232, 1984
  2. Katz S, Park KK. Palenik CJ. In vitro root surface caries studies. J Oral Med 42:40-48, 1987
  3. Katz RV, Hazen SP, Chilton NW, Mumma Jr. RD. Prevalence and intraoral distribution of root caries in an adult population. Caries Res 16:265-271, 1982 https://doi.org/10.1159/000260607
  4. Beck JD, Hunt R. Hands JS, Field HM. Prevalence of root and coronal caries in a noninstitutionalized older population. JADA 111:964-968, 1985
  5. Tohda H. Fejerskov O, Yanagisawa T. Transmission electron microscopy of cementum crystals correlated with Ca and F distribution in normal and carious human root surfaces, J Dent Res 75:949-954. 1996 https://doi.org/10.1177/00220345960750031301
  6. Hayashi Y. High resolution electron microscopy of enamel crystallites demineralized by initial dental caries. Scanning Microscope 9: 199-206, 1995
  7. Holmen L, Thylstrup A, Featherstone JDB, Fredebo L, Shariati M. A scanning electron microscopic study of surface changes during development of artificial caries. Caries Res 19: 11-21. 1985 https://doi.org/10.1159/000260825
  8. Moore BW, Carter WJ, Fosdick LS. The formation of lactic acid in dental plaque. J Dent Res 35:778-785, 1956 https://doi.org/10.1016/j.jdent.2007.07.006
  9. Theuns HM, van Dijk JWE, Driessens FCM, Groeneveld A. Effect of the pH of buffer solutions on artificial carious lesion formation in human tooth enamel. Caries Res 18:7-11, 1984 https://doi.org/10.1159/000260740
  10. Theuns HM, van Dijk JWE, Driessens FCM, Groeneveld A. Effect of time, degree of saturation, pH and acid concentration of buffer solutions on the rate of in vitro demineralization of human enamel. Arch Oral Biol 30: 37-42, 1985 https://doi.org/10.1016/0003-9969(85)90022-6
  11. Margolis HC, Zhang YP, Lee CY, Kent Jr. RL, Moreno EC. Kinetics of enamel demineralization in vitro. J Dent Res 78:1326-1335, 1999 https://doi.org/10.1177/00220345990780070701
  12. Margolis HC, Murphy BJ. Moreno EC. Development of caries-like lesions in partially saturated lactate buffers. Caries Res 19:36-45, 1985 https://doi.org/10.1159/000260827
  13. Silverstone LM, Johnson NW, Hardie JM, Williams RA. Dental caries, aetiology, pathology and prevention. the MacMillan Press. pp. 176-177, 1981
  14. Aamdal-Scheie A, Luan WM, Dahlen G, Fejerskov O. Plaque pH and microflora of dental plaque on sound and carious tooth surface. J Dent Res 75: 1901-1908, 1996 https://doi.org/10.1177/00220345960750111301
  15. Feagin FF, Graves CN. Evaluation of the effects of F in acidified gelatin gel on root surface lesion development in vitro. Caries Res 22:145-149, 1988 https://doi.org/10.1159/000261096
  16. Hoppenbrouwers PMM, Driessens FCM, Borggreven JMPM. The vulnerability of unexposed human dentin roots to demineralization. J Dent Res 65:955-958, 1986 https://doi.org/10.1177/00220345860650071101
  17. Hoppenbrouwers PMM, Driessens FCM, Borggreven JMPM. The mineral solubility of human tooth roots. Arch Oral Biol 32:319-322, 1987 https://doi.org/10.1016/0003-9969(87)90085-9
  18. Shell is RP. Effects of a supersaturated pulpal fluid on the formation of caries-like lesions on the roots of human teeth. Caries Res 28: 14-20, 1994 https://doi.org/10.1159/000261614
  19. Featherstone JDB. Diffusion phenomena during artificial carious lesion formation. J Dent Res (Special issue) 56:D48-D52, 1977 https://doi.org/10.1177/00220345770560011001
  20. Soni NN, Brudevold F. Microradiographic and polarized-light studies of artificially produced lesions. J Dent Res 39:233-240, 1960 https://doi.org/10.1177/00220345600390020501
  21. Clarkson BH. Hall DL, Heilman JR, Wefel JS. Effect of proteolytic enzymes on caries lesion formation in vitro. J Oral Pathol 15:423-429, 1986 https://doi.org/10.1111/j.1600-0714.1986.tb00651.x
  22. Clarkson BH. Wefel JS, Miller I. A model for producing caries-like lesions in enamel and dentin using oral bacteria in vitro. J Dent Res 63:1186-1189, 1984 https://doi.org/10.1177/00220345840630100201
  23. Clarkson BH. Krell D, Wefel JS, Crall J, Feagin FF. In vitro caries-like lesion produced by Streptococcus mutans and Actinomyces viscosus using sucrose and starch. J Dent Res 66:795-798, 1987 https://doi.org/10.1177/00220345870660031801
  24. Shay K. Root caries in the older patient. Dent Clin North Am 41:763-793, 1997
  25. Silverstone LM. Observations on the dark zone in early enamel caries and artificial caries-like lesions Caries Res 1:261-274, 1967 https://doi.org/10.1159/000259521
  26. Moreno EC. Zahradnik RT. Chemistry of enamel subsurface demineralization in vitro. J Dent Res (Supplement) 53:226-235, 1974 https://doi.org/10.1177/00220345740530020901
  27. Wefel JS, Heilman JR, Jordan TH. Comparisons of in vitro root caries models. Caries Res 29:204-209, 1995 https://doi.org/10.1159/000262070
  28. Phankosol P, Ettinger RL, Hicks MJ, Wefel JS. Histopathology of the initial lesion of the root surface: an in vitro study. J Dent Res 64:804-809, 1985 https://doi.org/10.1177/00220345850640050401
  29. Schupbach P, Guggenheim B. Lutz F. Human root caries - histopathology of initial lesions in cementum and dentin. J Oral Pathol Med 18:146-156, 1989 https://doi.org/10.1111/j.1600-0714.1989.tb00753.x
  30. Wefel JS, Clarkson BH. Heilman JR. Natural root caries - a histologic and microradiographic evaluation. J Oral Path 14:615-623, 1985 https://doi.org/10.1111/j.1600-0714.1985.tb00538.x
  31. Furseth R. Johansen E. The mineral phase of sound and carious human dental cementum studied by electron microscopy. Acta Odontol Scand 28: 305-322, 1970 https://doi.org/10.3109/00016357009032037
  32. Westbrook JL, Miller AS, Chilton NW, Williams FL, Mumma Jr, RD. Root surface caries - a clinical, histopathologic and microradiographic investigation. Caries Res 8:249-255, 1974 https://doi.org/10.1159/000260113
  33. Takuma S, Ogiwara H. Suzuki H. Electron-probe and electron microscope studies of carious dentinal lesions with a remineralized surface layer. Caries Res 9:278-285, 1975 https://doi.org/10.1159/000260163
  34. LeGros RZ. Formation and stability of synthetic apatites. In: calcium phosphates in oral biology and medicine. Karger, pp. 82-107, 1991
  35. Buskes JA, Christoffersen J. Arerds J. Lesion formation and lesion remineralization in enamel under constant composition conditions - A new technique with applications. Caries Res 19:490-496, 1985 https://doi.org/10.1159/000260887
  36. 한원섭, 이찬영. 유기산 완충용액의 불소농도가 상아질의 재광화에 미치는 영향. 연세대학교 대학원 논문, 2004
  37. Schupbach P, Guggenheim B, Lutz F. Histopathology of root surface caries. J Dent Res 69:1195-1204, 1990 https://doi.org/10.1177/00220345900690051601
  38. Schupbach P, Guggenheim B, Lutz F. Human root caries - histopathology of advanced lesions. Caries Res 24: 145-158, 1990 https://doi.org/10.1159/000261258
  39. Schupbach p, Guggenheim E, Lutz F. Human root caries - histopathology of arrested lesions. Caries Res 26: 153-164, 1992 https://doi.org/10.1159/000261436
  40. Nyvad B, ten Cate JM, Fejerskov O. Microradiography of experimental root surface caries in man. Caries Res 23:218-224, 1989 https://doi.org/10.1159/000261181
  41. Nyvad B, Fejerskov O. Root surface caries - clinical. histopathological and microbiological features and clinical implications. Int Dent J 32:311-326, 1982
  42. Nyvad B, Fejerskov O. Active and inactive surface caries - structural entities? In : Thylstrup A, Leach SA, Qvist V eds. Dentine and dentine reactions in the oral cavity. Oxford, IRL Press, 1987 : pp.165-179
  43. Daculsi G, Kerebel B, Le Cabellec M, Kerebel L. Qualitative and quantitative data on arrested caries in dentine. Caries Res 13:190-202, 1979 https://doi.org/10.1159/000260400
  44. Daculsi G, Le Geros RZ, Jean A. Kerebel B. Possible physico-chemical processes in human dentin caries. J Dent Res 66:1356-1359, 1987 https://doi.org/10.1177/00220345870660081401
  45. Arends J. Christoffersen J. The nature of early caries lesions in enamel. J Dent Res 65:2-11. 1986 https://doi.org/10.1177/00220345860650010201
  46. Dietz W, Kraft U, Hoyer I, Klingberg G. Influence of cementum on the demineralization and remineralization processes of root surface caries in vitro. Acta Odontol Scand 60: 241-247, 2002 https://doi.org/10.1080/000163502760148025
  47. McIntyre JM, Featherstone JD, Fu J. Studies of dental root surface caries (2) - The role of cementum in root surface caries. Aust Dent J 45:97-102, 2000 https://doi.org/10.1111/j.1834-7819.2000.tb00248.x
  48. 박정원, 허복, 이찬영. 유기산 완충용액의 포화도가 법랑질 및 상아질의 재광화에 미치는 영향과 수산화인회석의 AFM관찰. 대한치과보존학회지 125:459-473, 2000