DOI QR코드

DOI QR Code

Optimization of gibberellin production by Fusarium prolifertum KGL0401 and its involvement in waito-c rice growth

Fusarium prolifertum KGL0401의 지베렐린 생산 최적조건과 waito-c 생장에 미치는 영향

  • Rim, Soon-Ok (Department of Microbiology, Kyungpook National University) ;
  • Lee, Jin-Hyung (Department of Microbiology, Kyungpook National University) ;
  • Lee, In-Jung (Department of Agriculture, Kyungpook National University) ;
  • Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Jong-Guk (Department of Microbiology, Kyungpook National University)
  • Published : 2007.01.29

Abstract

Fusarium proliferatum KGL0401 was previously isolated from Physalis alkekengi var. francheti plant roots and exhibited higher GA productivity than wild type Gibberella fujikuroi. The :tim of this work was to find out an optimal culture condition for GA production. Various carbon(fructose, glucose, lactose, maltose, sucrose) and nitrogen($KNO_3$, urea, glycine, $NaNO_3,\;NH_4Cl$) sources were used for this study. GAs activities were analysed by gas chromatography and mass spectrometry(GC-MS). The highest yield of $GA_3$ was found in the growth medium supplemented with sucrose as carbon source and $NH_4Cl$ as nitrogen source. The optimum carbon-nitrogen concentration for $GA_3$ production was found to be 0.5 M:0.17 M. Supernatant was prepared from the culture fluid of F. proliferatum KGL0401 cultured for 7 days at 3 0'E and the 10 ul supernatant was treated with 2 leaf-rice seedling.

본 연구는 지베렐린을 생산하는 곰팡이로 알려진 야생균주 Gibberella fujikuroi보다 더 많은 지베렐린을 생산하는 균인 Fusarium proliferatum KGL0401를 꽈리 뿌리에서 분리하였으며[13], 지베렐린 생산을 위한 최적 탄소원과 질소원의 종류, C:N ratio에 대해서 실험을 수행하였다. 지베렐린 중 생물학적 활성이 가장 높은 $GA_3$를 가장 많이 생산하는 탄소원은 sucrose(7.02 ng/ml)이었으며, 질소원은 $NH_4Cl$(187.63 ng/ml)이었다. 그리고 최적 C:N ratio를 찾기 위해 탄소원(0 - 1.5 M)과 질소원(0 - 0.47M)을 배지에 첨가하였다. 결과적으로 최적 탄소원과 질소원의 ratio가 0.5 M : 0.17 M일 때 생물학적 활성을 가진 $GA_3$를 140.0 ng/ml로 가장 많이 생산하는 것으로 나타났다. 그리고 bioassay 결과 $GA_1,\;GA_3\;GA_4$$GA_7$의 함량이 가장 높았던 C:N ratio가 0.5 M : 0.17 M 일 때의 배양액 10 ul을 처리한 waito-c 볍씨의 길이가 평균 11.1 cm로 가장 높게 나타났다.

Keywords

References

  1. Basiacik, K. S. and N. Aksoz. 2004. Optimization of carbon-nitrogen ratio for production of gibberellic acid by Pseudomonas sp.. Pol. J. Microbiol. 53, 117-20
  2. Bottini, R., F. Cassan and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65, 497-503
  3. Choi, W. Y., K. S. Shin, I. J. Lee, I. K. Rhee, J. H. Lee, and J. G. Kim. 2004. Isolation of gibberellin-producing Penicillum spp. from the root of Lindera obtusilob and Vaccinium koreanum. Kor. J. Mycol. 32, 16-22 https://doi.org/10.4489/KJM.2004.32.1.016
  4. Choi, W. Y., S. O. Rim, J. H. Lee, J. M. Lee, I. J. Lee, K. J. Cho, I. K. Rhee, J. B. Kwon, and J. G. Kim. 2005. Isolation of gibberellins-producing fungi from the root of several sesamum indicum plants. J. Microbiol. Biotechnol. 15, 22-28
  5. Escamilla, EM, L. Dendooven, IP Magana, R. Parra and M. De la Torre. 2000. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors, J. Biotechnol. 76, 147-55 https://doi.org/10.1016/S0168-1656(99)00182-0
  6. Hedden, Peter and A. L. Phillips. 2000. Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Sci. 5, 523-530 https://doi.org/10.1016/S1360-1385(00)01790-8
  7. Hedden, Peter, A. L. Phillips, M. C. Rojas, E. Carrera, and B. Tudzynski. 2002. Gibberellin biosynthesis in plants and fungi: A case of convergent evolution? J. Plant Growth Regul. 20, 319-331 https://doi.org/10.1007/s003440010037
  8. Kawaide, H. and T. Sassa. 1993. Accumulation of gibberellin $A_1$ and the metabolism of gibberellin $A_9$ to gibberellin $A_1$ in a Phaeosphaeria sp. L 487 culture. Biosci Biotech Biochem. 57, 1403-1405 https://doi.org/10.1271/bbb.57.1403
  9. Kawanabe, Y., H. Yamane, T. Murayama, N. Takahashi and T. Nakamura. 1983. Identification of gibberellin $A_3$ in mycelia Neurospora crassa. Agric. Biol. Chem. 47, 1693-1694 https://doi.org/10.1271/bbb1961.47.1693
  10. Oller-Lopez, JL, J. Avalos, AF Barrero, and JE Oltra. 2003. Improved $GA_1$ production by Fusarium fujikuroi. Appl. Microbiol. Biotechnol. 63, 282-5 https://doi.org/10.1007/s00253-003-1376-6
  11. Olszewki, N., T. Sun, and F. Gubler. 2002. Gibberellin signal: biosynthesis, catabolism, and response pathways. The Plant Cell S61-S80
  12. Rachev, R., V. Gancheva, S. Bojkova, C. Christov, and T. Zafirova, 1997. Gibberellin biosynthesis by Fusarium moniliforme in the presence of hydrophobic resin Amberlite XAD-2. Bulg. J. Plant Physi. 12, 24-31
  13. Rim, S. O., J. H. Lee, W. Y. Choi, S. K. Hwang, S. J. Suh, I. J. Lee, I. K. Rhee, and J. G. Kim. 2005. Fusarium prolifertum KGL0401 as a new gibberellin-producing fungus. J. Microbiol. Biotechnol. 15, 809-814
  14. Sanchez-Fernandez, R., J. Avalos, and E. Cerda-Olmedo. 1997. Inhibition of gibberellin biosynthesis by nitrate in Gibberella fujikuroi. FEBS Lett. 413, 35-39 https://doi.org/10.1016/S0014-5793(97)00872-7
  15. Tudzynski, B. 1999. Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl. Microbiol. Biotechnol. 52, 298-310 https://doi.org/10.1007/s002530051524

Cited by

  1. Plant Growth Promotion of Calystegia soldanella and Ischaemum anthephoroides by the Strain Penicillium citrinum KACC43900 vol.20, pp.9, 2010, https://doi.org/10.5352/JLS.2010.20.9.1373