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SUFFICIENT CONDITIONS FOR STARLIKENESS AND
STRONGLY-STARLIKENESS

OH SANG KWON

ABSTRACT. In this paper we derive certain sufficient conditions for star-
likeness and strongly-starlikeness of analytic functions in U, by using the
method of differential subordination.

1. Introduction
Let A, denote the class of functions of f of the form
f(2) =24 anp12" +apg02™ 2+, 2 €U,
which are analytic in the unit disc U.
Let A = A; and let $*(8) = {f € A’Re ZJJ:(S) >B8,0<B<1, z¢€ U} be

the class of starlike functions of order 8 in U.
For A € (0,1] let

§*()\)={feA

2f(2)| _\m
arg e '<)\2, zEU}
denote the class of strongly starlike functions.

We will use the following notions and lemmas to prove our results.

If f and g are analytic functions in U, then we say that f is subordinate to
g, and write f < g or f(z) < g(2), if there exists a function w(z) analytic in U
with w(0) = 0 and |w(z)| < 1 for z € U, such that f(z) = g(w(z)) for z € U.
If g is univalent then f < g if and only if f(0) = g(0) and f(U) C g(U).

A function f(z) in A is said to be in the class §*(C, D) if satisfies

zf'(z) - 1+CZ
f(2) 1+DZ
for some C and D (-1 <D< C <1).
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Lemma A ([1], [2], [3]). Let q be univalent in U with q(¢) # 0, |¢| = 1,
q(0) = a and p(z) = a+ ppz™ + -+ be analytic in U, p(z) # a, and n > 1.
If p(z) A q(2) then there exist points zo € U, &, € OU and there is m > n

such that:
(i) p(20) = q(%0)
(i)  zop'(20) = méoq’ (&)-

The function L(z,t), 2 € U, t > 0 is a subordination chain if L(z,t) =
a1(t)z + az(t)z? + --- is analytic and univalent in U for any t > 0 and if
L(Z,tl) =< L(Z,tg) when 0 < t; < to.

Lemma B ([5]). The function L(z,t) = a1(t)z + ax(t)z2 + - -+, with ay(t) # 0
fort>0 and tlim la1(t)| = oo is a subordination chain if and only if there are
the constants r € (0,1] and M > 0 such that:

(i) L(z,t) is analytic in [z] <r for any t > 0, locally absolute continuous in
t > 0 for every |z| < r and satisfies |L(z,t)| < Mlay(t)] for |z| <r andt > 0.

(i) There is a function p(z,t) analytic in U for any t > 0 measurable in
[0,00) for any 2z € U with Re p(2,t) > 0 for z € U, t > 0 such that

0L(z,t) OL(z,t)

5% =% 5, p(z,t) for |z| <7

and for almost any t > 0.

The object of this paper is to derive some sufficient conditions for starlikeness
and strongly-starlikeness of functions in A.

2. Main results
Theorem 2.1. Let o > 0 and let q be a convex function in U, with ¢(0) = 1,
-1
and let

Re q(2) > <

(1) h(z) = anzq'(2) + ag®(2) + (2 - 2a)q(2),

where n is a positive integer. If the function p(2) = 1+ pp2™+- -+ satisfies the
condition

(2) azp'(2) + ap®(2) + (2~ 22)p(2) < h(2),
where h is given by (1) then p(2) < q(z), and q(z) is the best dominant.
Proof. Let
L(z,t) = a(n+t)zq'(2) + ag®(2) + (2 — 2a)q(2)
= 9(q(2), (n + t)z¢ ().

If t = 0, we have L(z,0) = anzq'(z) + ag®(2) + (2 — 2a)q(z) = h(z). We will
show that condition (2) implies p(z) < g(z) and q(z) is the best dominant.

(3)
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From (3) we deduce

OL(z,t)
i 0z _ 1 zq”(z) 9 ( 2-2a
Bt (n+t) [ + ___q’(z) } +2¢(2) + ——

ot
-1
and by using the convexity of ¢(z) and Re ¢(z) > —QT, we obtain

ZBL(z, t)

Re —B—L—(azz,—t) > 0.
ot
Hence by Lemma B, we deduce that L(z,t) is a subordination chain. In
particular, the function h(z) = L(z,0) is univalent and h(z) < L(z,t), fort > 0.
If we suppose that p(z) £ g(z) then, from Lemma A, there exist 2o € U, and
& € 0U such that p(z9) = g(&o) with |&| = 1, and 29p'(2q) = (n + t)&q’ (&0)
with ¢ > 0. Hence

Yo = P(p(20), 200’ (20)) = Y(a(&o), (n + t)60q (o)) = L(éo,t) t > 0.
Since h(z9) = L(2p,0), we deduce that 1 € h(U), which contradicts condition

(2). Therefore we have p(z) < ¢(z) and ¢(2) is the best dominant. O
2f'(2) S
If we let p(z) = ) where f € A, then Theorem 2.1 can be written in

the following equivalent form:

a—1

Theorem 2.2. Let q(z) be convez function with ¢(0) = 1, Re ¢(z) >

and o> 0. If f € A, with fg # 0, z € U, satisfies the condition:

O YT (C N
O TR < h), €T

where h is given by (1) then
2f'(2)
f(2)

< q(2)
and g(z) is the best dominant.

3. Some applications
Theorem 3.1. If f(2) € A satisfies 1(2) #0in U and

L) 2f(2)
1) 7(2)

+(2-0a) =< h(z),
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where
(4)

" (@C? + CD(2 — 2a))22 + (a(C — D)+ 2C + D(2 ~2a))z + 2 — a

(2) = :
(1+ Dz)?
(5) -1<D<C<], 1_;2 = and a >0,
then f(z) € S*(C, D).
2f'(2)

Proof. Let us define the analytic function p(z) in U by p(z) = in Theo-

1+Cz
1+ Dz

f(2)
rem 2.1. If ¢(z) = (-1 < D < C <1), then q(z) is a convex function,
and
1+Cz 1+Cz\* 1+C2
h(z)_az<1+Dz) <1+D ) T2 <1+Dz)

(@C?+ CD(2 - 2a))22 + (a(C — D)+ 2C + D(2 —22))z + 2 — «

(1+ Dz)? '
By Theorem 2.2, we get f(z) € S*(C, D). O

Corollary 3.2. If f(z) € A satisfies Hz) #0inU and
z

2 f"(2) 2f'(2)
(6) o @) +(2-a0)=%~ e <aC?’22+C2+a)z+2—q,
whereO<C§1,1—C’Za;landa>0, then
zf'(2)
(7) 5 -1 <C (2€U)

and the bound C in (7) is sharp.

Proof. Letting D = 0 in Theorem 3.1 and using (6), we have the inequality
(7). If we take f(z) = 2%, then

22 f"(2) _ zf'(z) _ 2,2 2 _
a ) +(2~-a) 8 =aC*z*+C2+a)z+2—-a
and ()
z2f'(z
i) _II‘C'Z' - C
as [z — L O

Corollary 3.3. If f(z) € A satisfies —= f( ) #0 iU and

) 21/(2)
@) @)

(8) +(2-a) < h(z)
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where

9) h(z) = (1-28)(3a — 2083 — 2)(2:121-2(;13 — 203 —-48)2 +2 - a,
0<fB<landl0<a< ﬁ, then f(z) € §*(B).

Proof. Setting C =1-283 (0 < 8 < 1)and D= -1 in Theorem 3.1, it follows
from (8) and (9) that f(z) € S*(8). O

Taking oo = 1 in Corollary 3.3, we have following corollary.

Corollary 3.4. If f(z) € A satisfies @ #0inU,0<8<1 and
22f"(2) | 2f(2)  (1-28)%22+(4-68)z+1
(19 @ T f@ - ’

then f(2) € S*(8).

1
Remark 1. Setting § = 2 in Corollary 3.4, we obtain a result due to K. S.

2 f2) 2z | 1tz
Padmanabham [4]. That is, if ) + ) 1-2)2

Theorem 3.5. If f(2) € A satisfies 1(2) #01in U and

z

in U then S*(3).

2P o
iy Ty <hE)
where '
2\ (20 = 2)22 + 2002 —2a 2\
(11) h(z):(itz) l(z 2) (;r_’zZ;H 2 +°‘sz) }

0<A<1and0<a<l, then f(z) € S*()).

1
Proof. If q(z) = (1 te

h(z) = az ((ij)x);a <(1jz)k>2+(2—2a) th)A

B (1+z>’\_1 [(2a—2)z2+2a)\z+2—2a ta (1+z>>‘+1]

A
) in Theorem 2.1, then

1—2z (1—2)2 1-2
By Theorem 2.2, we get f(z) € S*(\). O
Remark 2. Fora =1 and A = %, Theorem 3.5 refines a result by Ramesha et

al. [6]. That is, if Re {ZQJ{Z;()Z) + ZJ{(’S)} > 0 then §*(3).
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By choosing certain subdomains of h(U), we can deduce the following par-
ticular criteria for strongly-starlikeness.

Corollary 3.6. Let 0 < A< land O < a <1 Iffe A with @ # 0,

satisfies the condition

[ A |
(12) ag{ B +(2-0a) 8 } < go(a, A),
where
al AT
1+1t2) + asi —t’\+1
(13) ¢0(a,)\)=i27£+tan 1 2( ) o sin 2 ,

Q@ Ccos 2\2— tot + (2 - 2a)ty

and tg s the root of the equation:

o?
(az)\ * COS A ——)\()\ +1)cos — AT ) A2 L al(2 - 20)t
(14) 2 2

Am
+ (2 — 2a) sin /\%t’\“ a2/\ (A+1)cos 775)‘ —a(l—a)A=0

then f(z) € §*(\).
Proof. The domain h{U), where h is given by (11), is symmetric with respect

to the real axis. Therefore, if 2 = €%, then in order to obtain the boundary of
h(U) it is sufficient to suppose 0 < 6 < .

0 .
Letting cot 3= t and h(e®) = u + v, we find:

u(t) = ¢ [ a2’\ta(1 +12) + (2 — 2a)b + a(b? 2)19]
(15)
v(t) = tA [ 2’>b(1 +12) + (2 - 2a)a + 2aabt’\]

A
where a = sin 2\—7[ and b = cos Tﬂ-
‘We also have
¢ = ¢(t) =arg h(c”)
al

A
(16) r 221+ 12) + - sin o+
=7 + tan_l 2

5 .
a-cosT7r S+ (2 - 200t

From (15) it is easy to show that the equation ¢/(¢) = 0, has the root ¢y, which
is the root of the equation (14). Hence

min ¢(t) = ¢(to) = (e, A),
where ¢o(a, ) is given by (13).
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We deduce that the sector {w : |argw| < ¢ola, A} is the largest sector
which lies in A(U). Hence (12) implies

L) 2f'(2)
1) 8

where  is given by (11). By Theorem 2.2, we get f(z) € S*(\). O
f( )

+(2-a) < h(z)

Corollary 3.7. Let 0 < A< 1,0<a <1l Iff e A with —
the condition

(17) ‘Im (az2]{<l;()z) +(2—a) Z}{QS)) ' < V(e \),

where V (o, ) = v(ty), with v given by (15) and to is the root of the equation:

# 0, satisfies

pY by
(18) dasin Mt +a(A+1) cos %’rt2+2(2—2a) sin 7”t+a(x—1) cos —g =0

then f € 5*()).
Proof. From (15) we deduce:

a(A=1)
2

a(A+1)b

v = M2 + (2 - 2a)at + t? + doabt !

and the equation v'(t) = 0 become (18).
Hence

Vi, A) =v(tg) = m>161v(t)
and we deduce that the strip |v] < V(a, A) lies in A(U). Therefore (17) implies

L1 2f'(2)
) f(z)

which h is given by (11). By Theorem 2.2, we get f € g*()\). O

+(2-0)

< h(z)

Corollary 3.8. Let 0 < A< 1,0 < a < 1. If f € A with i(zz—) # 0, satisfies
the condition

sz//(z) zf’(z)
(19) Re la @) +(2—-a) 5 ] > U(a, A),
where U(a, A) = u(tq), with u given by (15) and tg is the root of the equation:

Am A
(20) 4arcos Ant*1 —a(A+1) sin - t2+2(2—2a) cos Tt —a(A— 1)sm)\_27z ~0

then f € S*()).
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Proof. From (15) we deduce:

u = A2 _9“—(’\?:_—1) + (2 = 2a)bt — ced+1) + 2a(b? — a2)t>‘+1]
and the equation ’(t) = 0 become (18).
Hence

Ula, A) = ulto) = maxu(t)
and we deduce that the half-plane {w : Re w SU (a, )} lies in A(U). Therefore

(19) implies
22f"(2) 2f'(2)

a——f(z) +(2-0) 5 =< h(2),

where h(z) is given by (11). Hence we get f(z) € S*(\) from Theorem 2.2. [J
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