DOI QR코드

DOI QR Code

Isolation and Identification of an Antibacterial Substance from Sea Mustard, Undaria pinnatifida, for Streptococcus mutans

미역 추출물로부터 충치 원인균, Streptococcus mutans에 대한 항균물질의 분리 및 동정

  • Yun, So-Mi (Division of Marine Life Science and Technology, Institute of Marine Industry, Gyeongsang National University) ;
  • Jang, Jun-Ho (Graduate School of Agricultural Science, Tohoku Univ.) ;
  • Lee, Jong-Soo (Division of Marine Life Science and Technology, Institute of Marine Industry, Gyeongsang National University)
  • 윤소미 (경상대학교 해양생명과학부, 해양산업연구소) ;
  • 장준호 (일본동북대학 대학원 농학연구과) ;
  • 이종수 (경상대학교 해양생명과학부, 해양산업연구소)
  • Published : 2007.02.28

Abstract

An antibacterial substance to the Streptococcus mutans, a causative bacterium for decayed teeth, was isolated from the dried sea mustard, Undaria pinnatifida, and identified by GC and GC/MS. Acetone extract from the sea mustard (10.4 kg), was evaporated and partitioned to 4 fractions such as hexane, chloroform, butanol and water. The most active chloroform fraction were further purified through basic alumina, silicic acid and ODS column, successively, and finally, 3 antibacterial substances were isolated on the HPLC attached ODS column by using 95% MeOH and guided with UV detector (254 nm). Antibacterial substances (total 160mg, yield $1.5\times10^{-3}$%) had the same Rf value (0.42) on the TLC developed hexane diethyl ether acetic acid (80:30:1) and those methyl esters moved to 0.95. They were identified as the same unsaturated fatty acid, $C_{18:4,\;n-3}$ (3,6,9,12-octadecatetraenoic acid, stearidonic acid) compared relative retention times (15.5 min) with authentic fatty acid on the GC chromatogram. It was further confirmed unambiguously on the GC/MS giving molecular ion peak at m/z 290 which coincided with its methyl ester.

건조 미역 10.4 kg을 acetone으로 추출, 여과한 다음 액-액 분배, 각종 크로마토그라피를 통하여 충치원인균, Streptococcus mutans에 대한 항균물질의 한 성분을 분리, 정제하고(160 mg, 수율 $1.5\times10^{-3}$%) 물질을 동정한 결과는 다음과 같다. 건조 미역 30 g 상당량의 추출액을 기준으로 용매 획분별 항균활성을 조사하였을 때, $CHCl_3$층이 73.2%로 가장 강하였고, hexane층이 62.0%이었으며, BuOH층이나 물층은 거의 없었다. 알루미나 칼럼에서는 산성 획분인 1% $NH_4OH:MeOH(1:1)$용매 획분이 81.0%의 항균활성을 나타내었으며, 실리카 칼럼에서는 $CHCl_3:MeOH(95:5)$용매에서 가장 높은 95.5%의 항균성을 나타내었고, ODS칼럼에서는 85% MeOH에서 96.4%의 항균성을 나타내었다. 최종적으로 ODS칼럼에서 95% MeOH를 이동상으로 하여 3개의 물질 S1(10 mg), S2(90 mg), S3(60 mg)을 분리 정제하였다. TLC에서 각 성분은 동일한 Rf값 0.42를 나타내어 동일한 물질로 추정되었으며, 이들을 메칠 유도체화한 성분들은 Rf값이 0.95로 바뀌어 이들 물질이 carboxyl기를 가지는 지방산으로 추정되었다. GC분석에서 표품 지방산과 비교한 결과, 이들은 $C_{18:4,n-3}$ 지방산과 retention time이 일치하였다. 또한, 메칠 유도체의 mass spectrum 분석 결과, m/z 290에 분자 이온 peak가 관측되어 $C_{18:4,n-3}$ 지방산의 methyl 유도체의 분자량과 일치하여, 이 물질을 3,6,9,12-octadecatetraenoic acid(stearidonic acid, $C_{18:4,n-3}$) 지방산으로 동정하였다.

Keywords

References

  1. Lee KY, Cho HS, Yoon JW, Hae TR. 1993. Study on the development of preventive agent of dental caries from biological active materials. Korean J Biotechnol Bioeng 8: 126-132
  2. Kim DB, Ju H, Baik BJ, Song WY, Song YH. 1995. Effects of propolis to the cariogenic activity of Streptococcus mutans. J Korean Acad Pediatr Dent 22: 231-238
  3. Hardie JM, Whiley RA. 1992. The genus Streptococcus-oral. In The Prokaryotes. 2nd ed. Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH, eds. Springer- Verlang, New York. p 1421-1449
  4. Do DS, Lee SM, Na MK, Bae KH. 2002. Antimicrobial activity of medicinal plant extracts against a cariogeni bacterium, Streptococcus mutans OMZ 176. Kor J Pharmacogen 33: 319-323
  5. Namba T, Tsunezuka M, Bae KH, Hattori M. 1981. Studies on dental caries prevention by traditional Chinese medicines. Shoyakugaku Zasshi 35: 295-302
  6. Nisizawa K. 1978. Marine algae from a viewpoint of pharmaceutical studies. Jap J Phycol 26: 73-78
  7. 佐藤 寬. 1993. 海藻成分の機能性. 海藻の科學, 大石圭一編. 朝倉書店, 東京, 日本. p 160-181
  8. Ali MS, Saleem M, Yamdagni R, Ali MA. 2002. Steroid and antibacterial steroidal glycosides from marine green alga Codium iyengarii Borgesen. Nat Prod Lett 16: 407-413 https://doi.org/10.1080/10575630290034249
  9. Bennamara A, Abourriche A, Berrada M, Charrouf M, Chaib N, Boudouma M, Garneau FX. 1999. Methoxybifurcarenone: an antifungal and antibacterial monoditerpenoid from the brown alga Cystoseira tamariscifolia. Phytochemistry 52: 37-40 https://doi.org/10.1016/S0031-9422(99)00040-0
  10. Enoki N, Ishida R, Matsumato T. 1982. Structure and conformation of new nine-membered ring diterpenoids from the marine alga Dictyota dichotoma. Chem Lett 11: 1749-1752 https://doi.org/10.1246/cl.1982.1749
  11. Kurata K, Amiya T. 1980. A new bromophenol from red alga Polysiphonia urce rolata. Bull Chem Soc Jpn 53: 2020-2022 https://doi.org/10.1246/bcsj.53.2020
  12. Kurata K, Amiya T. 1980. Bis(2,3,6-tribromo-4,5-dihydroxybenzyl) ether from the red alga, Symphyocladia latiuscula. Phytochemistry 19: 141-142 https://doi.org/10.1016/0031-9422(80)85032-1
  13. Vairappan CS, Kawamoto T, Miwa H, Suzuki M. 2004. Potent antibacterial activity of halogenated compounds against antibioticresistant bacteria. Planta Med 70: 1087- 1090 https://doi.org/10.1055/s-2004-832653
  14. Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK. 2003. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62: 1221-1224 https://doi.org/10.1016/S0031-9422(03)00004-9
  15. Asia A, Sugawara T, Ono H, Nagao A. 2004. Biotransformation of fucoxanthinol into amarouchiaxanthin a in mice and Hep G2 cells: formation and cytotoxicity of fucoxanthin metabolites. Drug Metab Dispos 32: 205-211 https://doi.org/10.1124/dmd.32.2.205
  16. Liu JN, Yoshida Y, Wang MQ, Okai Y, Yamachita U. 1997. B cell stimulating activity of seaweed extracts. Int J Immunopharmac 19: 135-142 https://doi.org/10.1016/S0192-0561(97)00016-7
  17. Mayer AMS, Hamann MT. 2002. Marine pharmacology in 1999: compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities; affecting the cardiovascular, endocrine, immune, and nervous systems and other miscellaneous mechanisms of action. Comp Biochem Physiol Part C 132: 315-339 https://doi.org/10.1016/S1532-0456(02)00094-7
  18. Mayer AMS, Hamann MT. 2004. Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol 6: 37-52 https://doi.org/10.1007/s10126-003-0007-7
  19. Lee DS, Kim TJ, Kim JH, Kim SB, Cho SW, Lim CW, Min JG. 2001. Effect of Eisenia bicyclis extract on the growth and glucosyltransferase activity of Streptococcus mutans. Bull Nat'l Fish Res Dev Inst Kor 59: 171-176
  20. Kim JH, Lee DS. 2002. Antibacterial activity of sea- mustard, Laminaria japonica extracts on the cariogenic bacteria, Streptococcus mutans. J Kor Fish Soc 35: 191-195
  21. Lorian V. 1991. Antibiotics laboratory medicine. Williams & Wilkins, Baltimore, USA. p 17-105
  22. Lee HS. 2005. Changes in EPA and DHA content of microalgae at different environment condition. MS thesis. Gyeongsang National Univ. p 9
  23. Kakisawa H, Asari F, Kusumi T, Toma T, Sakurai T, Oohusa T, Hara Y, Chihara M. 1988. An allelopathic fatty acid from the brown alga Cladosiphon okamuranus. Phytochemistry 27: 731-735 https://doi.org/10.1016/0031-9422(88)84084-6
  24. Fu M, Koulman A, Rijssel MV, Lutzen A, Boer MKD, Monika RT, Liebezeit G. 2004. Chemical characterization of three haemolytic compounds from the microalgal species Fibrocapsa japonica (Raphidophyceae). Toxicon 43: 355- 363 https://doi.org/10.1016/j.toxicon.2003.09.012
  25. Alamsjah MA, Hirao S, Ishibashi F, Fujita Y. 2005. Isolation and structure determination of algicidal compounds from Ulva fasciata. Biosci Biotechnol Biochem 69: 2186-2192 https://doi.org/10.1271/bbb.69.2186
  26. Khan MNA, Kang JY. 2006. Purification and characterization of anti-inflammatory constituents from the edible brown alga, Undaria pinnatifida. The 2006 joint meeting of the Kor Societies Fish Sci Abstracts p 145-146
  27. Choe SN, Choi KJ. 2000. Fatty acid compositions of natural lipids and polar lipids in the parts of Miyeok (Undaria pinnatifida). Kor J Food Nutr 13: 553-557
  28. Jeong BY, Cho DM, Moon SK, Pyeun JH. 1993. Quality factors and functional components in the edible seaweeds. J Korean Soc Food Nutr 22: 621-628

Cited by

  1. Isolation and Identification of Antimicrobial Compound from UlGeum (Curcuma longa L.) vol.38, pp.9, 2009, https://doi.org/10.3746/jkfn.2009.38.9.1202
  2. Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy vol.42, pp.4, 2009, https://doi.org/10.1016/j.lwt.2008.10.012
  3. Biosynthesis, characterization and synergistic effect of phytogenic gold nanoparticles by marine picoeukaryote Picochlorum sp. in combination with antimicrobials vol.25, pp.4, 2014, https://doi.org/10.1007/s12210-014-0341-x
  4. Anti-Listerial Activity of Four Seaweed Essential Oils Against Listeria monocytogenes vol.9, pp.7, 2016, https://doi.org/10.5812/jjm.31784
  5. Antimicrobial activities of stearidonic and gamma-linolenic acids from the green seaweed Enteromorpha linza against several oral pathogenic bacteria vol.54, pp.1, 2013, https://doi.org/10.1186/1999-3110-54-39
  6. Antimicrobial activity and stability of Prunus mume fruit extract against Streptococcus mutans KCCM 40105 strain vol.28, pp.3, 2007, https://doi.org/10.11002/kjfp.2021.28.3.426