DOI QR코드

DOI QR Code

Drying and Antioxidant Characteristics of the Shiitake (Lentinus edodes) Mushroom in a Conveyer Type Far-Infrared Dryer

컨베이어 원적외선 건조기를 이용한 표고버섯의 건조 및 항산화 특성

  • Li, He (Dept. of Biosystems Engineering, Chungbuk National University) ;
  • Choi, Young-Min (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Jun-Soo (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Park, Jong-Soo (Kibo Technology Fund, Gwangju Technology Appraisal Center) ;
  • Yeon, Kwang-Seok (Dept. of Biosystems Engineering, Chungbuk National University) ;
  • Han, Chung-Su (Dept. of Biosystems Engineering, Chungbuk National University)
  • 리혁 (충북대학교 바이오시스템공학과) ;
  • 최용민 (충북대학교 식품공학과) ;
  • 이준수 (충북대학교 식품공학과) ;
  • 박종수 (기술보증기금 광주기술평가센터) ;
  • 연광석 (충북대학교 바이오시스템공학과) ;
  • 한충수 (충북대학교 바이오시스템공학과)
  • Published : 2007.02.28

Abstract

In an attempt to find ways of improving the quality of dried Shiitake mushroom, this study compared a conveyer-type far-infrared drying method with a traditional heated air drying method. The conveyer-type far-infrared dryer was performed at air velocity of 0.6 and 0.8 m/s under drying air temperature of 60, 70 and $80^{\circ}C$, respectively. Drying characteristics, antioxidant activities and the antioxidant compounds of Shiitake mushroom dried by far-infrared dryer were investigated. Generally, drying rate with the conveyer-type far-infrared drying method was faster than that with the traditional heated air drying method. In the conveyer type far infrared drying method, drying rates were increased with increasing temperature and air velocity. The loss of antioxidant activities during the conveyer-type far-infrared drying method at 60-0.6, 60-0.8, and $70^{\circ}C-0.6m/s$ was less than the traditional drying method. However, the loss of antioxidant activities at 70-0.8, 80-0.6, and $80^{\circ}C-0.8m/s$ was higher than that of the traditional drying method. Therefore, the conveyer type far infrared drying conditions with below $70^{\circ}C$ and 0.6 m/s air velocity may produce dried Shiitake mushroom with relatively higher antioxidant activities and antioxidant compounds.

본 연구에서는 컨베이어식 원적외선 건조기를 이용하여 송풍속도와 건조온도에 따른 표고버섯의 건조특성과 건조제품의 색도변화를 조사하고 건조조건에 따른 표고버섯의 항산화성분과 항산화력의 변화를 분석함으로써 고품질의 원적외선 건조 표고버섯 제품 생산을 위한 기초 자료를 제시하고자 하였다. 컨베이어식 원적외선 건조의 경우 건조실 온도가 높고, 풍속이 증가할수록 건조속도가 빠른 것으로 나타났으며 열풍건조에 배해 건조시간을 약 $3\sim6.5$시간 단축할 수 있는 것으로 나타났다. 원적외선 건조에 의한 표고버섯의 항산화성분과 항산화력의 감소율은 $60^{\circ}C-0.6\;m/s,\;60^{\circ}C-0.8\;m/s,\;70^{\circ}C-0.6\;m/s$ 조건일 경우에만 열풍건조에 건조에 비해 적은 것으로 나타났으며, 그 이상의 조건에서는 열풍건조보다 손실률이 큰 것으로 나타났다. 따라서 원적외선 건조 내부의 건조조건을 저온 저속으로 결정한다면 표고버섯의 항산화성분과 항산화력의 손실을 최소화하고 열풍건조기에 비해 신속하고 색도의 변화가 최소화된 고품질의 표고버섯 제품을 생산할 수 있을 것으로 생각된다.

Keywords

References

  1. Chang R. 1996. Functional properties of edible mushroom. Nutr Rev 54: S91-S93 https://doi.org/10.1111/j.1753-4887.1996.tb03825.x
  2. Jin CF. 2004. Drying characteristics of oak mushroom using stationery far infrared dryer. MS Thesis. Chungbuk National University, Korea
  3. Han CS, Park WS. 1994. The theory and fact of far infrared heating. DoYa Printing, Seoul
  4. Kim MH 2004. Drying characteristics of oak mushroom using conveyer far infrared dryer-down draft air flow type-. MS Thesis. Chungbuk National University, Korea
  5. Fang YZ, Yang S, Wu G. 2002. Free radical, antioxidant, and nutrition. Nutr 18: 872-879 https://doi.org/10.1016/S0899-9007(02)00916-4
  6. Morrissey PA, O'Brien NM. 1998. Dietary antioxidant in health and disease. Int Dairy J 8: 463-472 https://doi.org/10.1016/S0958-6946(98)00070-3
  7. Willet WC. 1994. Diet and health: what should we eat. Science 254: 532-537 https://doi.org/10.1126/science.8160011
  8. Slavin JL, Jacobs D, Marquart L. 1997. Whole-grain consumption and chronic disease: protective mechanism. Nutr Cancer 27: 14-21 https://doi.org/10.1080/01635589709514495
  9. Ames BN, Shigenaga MK, Hagwn TM. 1993. Oxidants, antioxidants, and the degenerative disease of aging. Proc Natl Acad Sci 90: 7915-7922 https://doi.org/10.1073/pnas.90.17.7915
  10. Hwang BH. 1983. Analysis of amino acid and vitamin in oak mushroom (Lentinus edodes Sing). J Korean Wood Sci Tech 11: 18-24
  11. Kwon SH, Kem CN, Kim C, Kwon ST, Park KM, Hwangbo S. 2003. Antitumor activities of protein-bound polysaccharide extracted from mycelia of mushroom. Kor J Food Nutr 16: 15-21
  12. Choi BM, Han EJ, Choi JH, Hong JH, Sea JS. 1999. Equilibrium moisture content of Shiitake mushroom (Lentinus edodes). Kor J Post Harvest Sci Technol 6: 37-42
  13. Dewanto V, Xianzhong W, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964 https://doi.org/10.1021/jf0255937
  14. Jia Z, Tang M, Wu J. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559 https://doi.org/10.1016/S0308-8146(98)00102-2
  15. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  16. Park SJ, Kim SM, Kim MH, Kim CS, Lee CH. 1999. Development of a prototype continuous flow dryer using far infrared ray and heated-air for white ginseng. Proceeding of the Korean society for agricultural machinery summer conference. p 199-204

Cited by

  1. Antioxidant Activity from Different Root Parts of 6-year-old Panax ginseng C.A. Meyer (Yun-poong) vol.40, pp.4, 2011, https://doi.org/10.3746/jkfn.2011.40.4.493
  2. Drying characteristics and quality of red ginseng using far-infrared rays vol.39, pp.4, 2015, https://doi.org/10.1016/j.jgr.2015.04.001
  3. Physiologically Active Components and Antioxidant Capacity of Grapevine Leaves at Growth Stages vol.44, pp.6, 2012, https://doi.org/10.9721/KJFST.2012.44.6.772
  4. Physicochemical properties and antioxidant activities of hot waterextracts from medicinal fruit mixture vol.23, pp.2, 2016, https://doi.org/10.11002/kjfp.2016.23.2.267
  5. Antioxidant Activity of Hot-Water Extract from Yuza (Citrus junos SIEB ex TANAKA) Peel vol.18, pp.12, 2008, https://doi.org/10.5352/JLS.2008.18.12.1745
  6. Antioxidant and Anti-adipogenic Effects of PineXol® vol.45, pp.1, 2013, https://doi.org/10.9721/KJFST.2013.45.1.97
  7. Component Analysis and Antioxidant Activity of Oenanthe javanica Extracts vol.45, pp.2, 2013, https://doi.org/10.9721/KJFST.2013.45.2.227
  8. Antioxidant Effects and Nitrite Scavenging Ability of Extract from Acanthopanax cortex Shoot vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.793
  9. Antioxidant and Antigenotoxic Effects of Shiitake Mushrooms Affected by Different Drying Methods vol.41, pp.8, 2012, https://doi.org/10.3746/jkfn.2012.41.8.1041
  10. Antioxidant and Anti-lipase Activity in Halocynthia roretzi Extracts vol.43, pp.4, 2011, https://doi.org/10.9721/KJFST.2011.43.4.464
  11. Effect of Extraction Methods on Antioxidant Activities of Mori ramulus vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1709
  12. Antioxidant Activities of Ginseng Seeds Treated by Autoclaving vol.36, pp.4, 2012, https://doi.org/10.5142/jgr.2012.36.4.411
  13. Physicochemical Properties and Antioxidant Activity of Commercial Tomato Ketchup vol.30, pp.6, 2015, https://doi.org/10.7318/KJFC/2015.30.6.790
  14. Anti-oxidative Activity and the Protective Effect of Donkey's Bone and Skin Extracts on SK-N-SH Cells vol.23, pp.8, 2013, https://doi.org/10.5352/JLS.2013.23.8.1019
  15. Characteristics of Lactic Acid Fermentation of Black Raspberry Juice Using the Lactobacillus plantarum GBL17 Strain vol.31, pp.6, 2015, https://doi.org/10.9724/kfcs.2015.31.6.773
  16. Quality Characteristics and Antioxidant Activity Research of Halocynthia roretzi and Halocynthia aurantium vol.39, pp.10, 2010, https://doi.org/10.3746/jkfn.2010.39.10.1481
  17. Effect of Drying Methods and Gamma Irradiation on the Color Changes and Antioxidant Activity of Grape By-Products vol.39, pp.12, 2010, https://doi.org/10.3746/jkfn.2010.39.12.1826
  18. Antioxidant Activity of Fermented Wild Grass Extracts vol.25, pp.2, 2012, https://doi.org/10.9799/ksfan.2012.25.2.407
  19. Development of Rose Sparkling Wine with Reed Root Extracts vol.28, pp.4, 2015, https://doi.org/10.9799/ksfan.2015.28.4.666
  20. Effects of White Habiscus syriacus L. Flower Extracts on Antioxidant Activity and Bone Resorption Inhibition vol.23, pp.3, 2015, https://doi.org/10.7783/KJMCS.2015.23.3.190
  21. Antioxidant and Xanthine Oxidase Inhibitory Activities of Hot Water Extracts of Medicinal Herbs vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1712
  22. Antioxidant Activities of Ostrich Fern by Different Extraction Methods and Solvents vol.21, pp.1, 2011, https://doi.org/10.5352/JLS.2011.21.1.56
  23. Drying characteristics and quality of taegeuk ginseng (Panax ginsengC.A. Meyer) using far-infrared rays vol.48, pp.3, 2013, https://doi.org/10.1111/j.1365-2621.2012.03208.x
  24. Antioxidation Effect of Leg Bone Extracts and Enzyme Hydrolysates from Jeju Crossbred Horses (Jeju Native Horse×Thoroughbred) vol.23, pp.9, 2013, https://doi.org/10.5352/JLS.2013.23.9.1147
  25. Inhibitory activities on biological enzymes of extracts from Oplismenus undulatifolius vol.60, pp.2, 2017, https://doi.org/10.3839/jabc.2017.017
  26. Nutritional Characteristics and Screening of Biological Activity of Agarum cribrosum vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.842
  27. Far-infrared drying characteristics and quality assessment of Ligularia fischeri vol.22, pp.S1, 2013, https://doi.org/10.1007/s10068-013-0078-9
  28. vol.42, pp.10, 2018, https://doi.org/10.1111/jfpp.13711
  29. 벌나무 잎의 영양성분 및 이화학 특성 vol.22, pp.8, 2016, https://doi.org/10.20878/cshr.2016.22.8.003
  30. 마가목 줄기 열수 및 에탄올 추출물의 항산화 활성 vol.32, pp.3, 2007, https://doi.org/10.6116/kjh.2017.32.3.29
  31. 스마트 팜 시스템으로 재배된 표고의 외형평가 및 항산화능 활성 vol.15, pp.4, 2007, https://doi.org/10.14480/jm.2017.15.4.206
  32. 동결분쇄에 따른 아로니아, 자몽, 서리태, 발아현미의 이화학적 특성 vol.45, pp.4, 2007, https://doi.org/10.4014/mbl.1712.12014
  33. 추출에 따른 갈매보리수 잎 추출물의 항산화 효능 vol.23, pp.8, 2007, https://doi.org/10.20878/cshr.2017.23.8.009
  34. Radical scavenging-linked anti-adipogenic activity of Alnus firma extracts vol.41, pp.1, 2007, https://doi.org/10.3892/ijmm.2017.3221
  35. Protective Effects and Mechanisms of Pourthiaea villosa (Thunb.) Decne. Extract on Hydrogen Peroxide-Induced Skin Aging in Human Dermal Fibroblasts vol.22, pp.8, 2007, https://doi.org/10.1089/jmf.2018.4379
  36. 양배추 분말을 첨가한 시폰케이크의 품질 특성 vol.33, pp.1, 2020, https://doi.org/10.9799/ksfan.2020.33.1.009
  37. 청원 지역 쌀단백질 추출물의 항산화 및 수분 보유력 평가 vol.31, pp.4, 2020, https://doi.org/10.14478/ace.2020.1040
  38. Pectolinarin 고함유 곤드레 미세분말의 항산화 및 항비만 활성 vol.34, pp.1, 2007, https://doi.org/10.9799/ksfan.2021.34.1.069