Fatty Acid Profiles of Marine Benthic Microorganisms Isolated from the Continental Slope of Bay of Bengal: A Possible Implications in the Benthic Food Web

  • Das, Surajit (Centre of Advanced Study on Marine Biology, Annamalai University) ;
  • Lyla, P.S. (Centre of Advanced Study on Marine Biology, Annamalai University) ;
  • Khan, S. Ajmal (Centre of Advanced Study on Marine Biology, Annamalai University)
  • Published : 2007.12.31

Abstract

Marine bacteria, actionmycetes and fungal strains were isolated from continental slope sediment of the Bay of Bengal and studied for fatty acid profile to investigate their involvement in the benthic food-web. Fifteen different saturated and unsaturated fatty acids from bacterial isolates, 14 from actinomycetes and fungal isolates were detected. The total unsaturated fatty acids in bacterial isolates ranged from 11.85 to 37.26%, while the saturated fatty acid ranged between 42.34 and 80.74%. In actinomycetes isolates, total unsaturated fatty acids varied from 27.86 to 38.85% and saturated fatty acids ranged from 35.29 to 51.25%. In fungal isolates unsaturated fatty acids ranged between 44.62 and 65.52% while saturated FA ranged from 20.80 to 46.30%. The higher percentages of unsaturated fatty acids from the microbial isolates are helpful in anticipating the active participation in the benthic food-web of Bay of Bengal.

Keywords

References

  1. Block, J.H., P. Catafalmo, G.H. Constantine, Jr., and P.W. Kirk, Jr. 1973. Triglyceride fatty acids of selected higher marine fungi. Mycologia, 65, 488-491 https://doi.org/10.2307/3758122
  2. Cho, K.W. and S.J. Mo. 1999. Screening and characterization of eicosapentaenoic acid-producing marine bacteria. Biotechnol. Lett., 21, 215-218 https://doi.org/10.1023/A:1005445624918
  3. Cooney, J.J., M.M. Doolittle, O. Grahl-Nielsen, I.M. Haaland, and P.W. Kirk, Jr. 1993. Comparison of fatty acids of marine fungi using multivariate statistical analysis. J. Ind. Microbiol., 12, 373-378 https://doi.org/10.1007/BF01569668
  4. Das, S., P.S. Lyla, and S. Ajmal Khan. 2007a. Spatial variation of aerobic culturable heterotrophic bacterial population in sediments of the continental slope of western Bay of Bengal. Indian J. Mar. Sci., 36, 51-58
  5. Das, S., P.S. Lyla, and S. Ajmal Khan. 2007b. A scheme for the identification of heterotrophic marine bacteria. Afr. J. Microbiol. Res., 1, (In press)
  6. Das, S., P.S. Lyla, and S. Ajmal Khan. 2007c. Biogeochemical processes in the continental slope of Bay of Bengal: I. Bacterial solubilization of inorganic phosphate. Rev. Biol. Trop., 55, 1-9
  7. De Rosa, S., A. Milone, A. Kujumgiev, K. Stefanov, I. Nechev, and S. Popov. 2000. Metabolites from a marine bacterium Pseudomonas/Alterornonas, associated with the sponge Dysidea fragilis. Comp. Biochem. Physiol., 126, 391-396 https://doi.org/10.1016/S0305-0491(00)00208-X
  8. DeLong, E.F. and A.A. Yayanos. 1986. Biochemical and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl. Environ. Microbiol., 51, 730-737
  9. Devi, P., M.P. Divya Shridhar, L. D'Souza, and C.G. Naik. 2006. Cellular fatty acid composition of marine-derived fungi. Indian J Mar. Sci., 35, 359-363
  10. Fang, J., M.J. Barcelona, T. Abrajano, Y. Nogi, and C. Kato. 2002. Isotopic composition of fatty acids of extremely piezophilic bacteria from the Mariana Trench at 11,000 m. Mar. Chem., 80, 1-9 https://doi.org/10.1016/S0304-4203(02)00069-5
  11. Findlay, R.H, J.W. Fell, N.K. Coleman, and J.R. Vestal. 1986. Biochemical indicators of the role of fungi and thraustochytrids in mangrove detrital systems. p. 91-104. In: The biology of marine fungi, ed. by S.T. Moss. Cambridge University Press
  12. Gonzalezbaro, M.D. and R.J. Pollero. 1988. Fatty acid metabolism of Macrobrachium borellii - dietary origin of arachidonic and eicosapentaenoic acids. Comp. Biochem. Physiol., 119, 747-752
  13. Hamamoto, T., N. Takata, T. Kudo, and K. Horikoshi. 1994. Effect of temperature and growth phase on fatty acid composition of the psychrophilic Vibrio sp. strain no. 5710. FEMS Microbial. Lett., 119, 77-82 https://doi.org/10.1111/j.1574-6968.1994.tb06870.x
  14. Intriago, P. and D.A. Jones. 1993. Bacteria as food for Artemia. Aquaculture, 113, 115-127 https://doi.org/10.1016/0044-8486(93)90345-Y
  15. Ivanova, E.P., N.M. Gorshkova, J.P. Bowman, A.M. Lysenko, N.V. Zhukova, A.F. Sergeev, V.V. Mikhailov, and D. V. Nicolau. 2004. Shewanella pacifica sp. nov., a polyunsaturated fatty acid-producing bacterium isolated from sea water. Int. J. Syst. Evol. Microbiol., 54, 1083-1087 https://doi.org/10.1099/ijs.0.02993-0
  16. Johns, R.B. and G.J. Perry. 1977. Lipids of the marine bacterium Flexibacter polymorphus. Arch. Microbiol., 114, 267-271 https://doi.org/10.1007/BF00446872
  17. Jostensen, J.P. and B. Landfald. 1996. Influence of growth conditions on fatty acid composition of a polyunsaturated-fatty-acid-producing Vibrio species. Arch. Microbiol., 165, 306-310 https://doi.org/10.1007/s002030050331
  18. Jostensen, J.P. and B. Landfald. 1997. High prevalence of polyunsaturated-fatty-acid producing bacteria in arctic invertebrates. FEMS Microbial. Lett., 151, 95-101 https://doi.org/10.1016/S0378-1097(97)00148-1
  19. Kanazawa, A., S.I. Teshima, and O. Kazuo. 1979. Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids. Comp. Biochem. Physiol., 63B, 295-298
  20. Kato, C. 1999. Molecular analyses of the sediment and isolation of extreme barophiles from the deepest Mariana Trench. p. 27-37. In: Extremophiles in deep-sea environments, ed. by K. Horikoshi and K, Tsujii. Springer-Verlag, Tokyo
  21. Kohlmeyer, J. and B.V. Kohlmeyer. 1991. Illustrated key to the filamentous higher marine fungi. Bot. Mar., 34, 1-61 https://doi.org/10.1515/botm.1991.34.1.1
  22. Lechevalier, M.P. and H. Lechevalier. 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol., 20, 435-443 https://doi.org/10.1099/00207713-20-4-435
  23. Lee, O.O., C.K.L. Stanley, M.Y.T. Mandy, X. Li, I. Plakhotnikova, S. Dobretsov, M.C.S. Wu, P-K. Wong, and P-Y. Qian. 2006. Gillisia myxillae sp. nov., a novel member of the family Flavobacteriaceae, isolated from the marine sponge Myxilla incrustans. Int. J. Syst. Evol. Microbiol., 56, 1795-1799 https://doi.org/10.1099/ijs.0.64345-0
  24. Lewis, T.E., P.D. Nichols, and T.A. McMeekin. 1999. The biotechnological potential of thraustochytrids. Mar. Biotechnol., 1, 580-587 https://doi.org/10.1007/PL00011813
  25. Muller-Navarra, D.C., M.T. Brett, A.M. Liston, and C.R. Goldman. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403, 74-77 https://doi.org/10.1038/47469
  26. Nadimuthu, N. 1998 Studies on the fungi of the coral reef environment of the Gulf of Mannar biosphere reserve, India. Ph.D thesis, Annamalai University, India
  27. Nichols, D.S. 2003. Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiol. Lett., 219, 1-7 https://doi.org/10.1016/S0378-1097(02)01200-4
  28. Nichols, D.S. and T.A. McMeekin. 2002. Biomarker techniques to screen for bacteria that produce polyunsaturated fatty acids. J. Microbiol. Methods, 48, 161-170 https://doi.org/10.1016/S0167-7012(01)00320-7
  29. Nichols, D.S., P.D. Nichols, and T.A. McMeekin. 1993. Polyunsaturated fatty acids in Antarctic bacteria. Antarctic Sci., 5, 149-160
  30. Phillips, N.W. 1984. Role of different microbes and substrates as potential suppliers of specific, ssential nutrients to marine detritivores. Bull. Mar. Sci., 35, 283-298
  31. Pujari, S., R. Roy, and S. Bhosle. 2004. Screening of bacteria from sediments of coastal ecosystem, as potential sources of alpha linolenic acid. Indian J. Mar. Sci., 33, 243-247
  32. Russell, N.J. and D.S. Nichols. 1999. Polyunsaturated fatty acids in marine bacteria - a dogma rewritten. Microbiol., 145, 767-779 https://doi.org/10.1099/13500872-145-4-767
  33. Sargent, J.R. 1976. The structure, metabolism and function of lipids in biochemical and biophysical perspectives. p. 149-212. In: Marine Biology, ed. by D.C. Malins and J.R. Sargent. Academic Press, London
  34. Sasser, M., C. Kunitsky, G. Jackoway, J.W. Ezzell, J.D. Teska, B. Harper, and S. Parker. 2005. Identification of Bacillus anthracis from culture using Gas Chromatography analysis of fatty acid methyl esters. J. AOAC International, 88, 178-181
  35. Shirasaka, N., K. Nishi, and S. Shimizu. 1995. Occurrence of a furan fatty acid in marine bacteria. Biochim. Biophys. Acta, 1258, 225-227 https://doi.org/10.1016/0005-2760(95)00126-W
  36. Skerratt, J.H., J.P. Bowman, and P.D. Nichols. 2002. Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int. J. Syst. Evol. Microbiol., 52, 2101-2106 https://doi.org/10.1099/ijs.0.02351-0
  37. Sorokin, Y.I. 1993. Aquatic microbial ecology. Backhuys Publishers, Leiden
  38. Steffens, W. and M. Writh. 1997. Cyprinids as a valuable source of essential fatty acids for human health: A review. Asian Fisheries Sci., 10, 83-90
  39. Stevens, C.E. 1988. Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge
  40. Tanakol, R., Z. Yazici, E. Sener, and E. Sencer. 1999. Fatty acid composition of 19 species of fish from the black sea and the Marmara Sea. Lipids, 34, 291-297 https://doi.org/10.1007/s11745-999-0366-8
  41. Visentainer, J.V., M.D. Noffs, P.de O. Carvalho, V.V. de Almeida, C.C. de Oliveira, and N.E. de Souza. 2007. Lipid content and fatty acid composition of 15 marine fish species from the southeast coast of Brazil. J. Am. Oil Chem. Soc., 84, 543-547 https://doi.org/10.1007/s11746-007-1070-4
  42. Watanabe, K., C. Ishikawa, K. Yazawa, K. Kondo, and A. Kawaguchi. 1996. Fatty acid and lipid composition of an eicosapentaenoic acid-producing marine bacterium. Mar. Biotechnol., 4, 104-112
  43. Whyte, J.N.C. 1988. Fatty acid profiles from direct mwthanolysis of lipids in tissue of cultured species. Aquaculture, 75, 193-203 https://doi.org/10.1016/0044-8486(88)90032-4
  44. Whyte, J.N.C., N. Bourne, and C.A. Hodgson. 1990. Nutritional condition of rock scallop Crassadoma gigantea (Gray) larvae feed mixed algal diets. Aquaculture, 86, 25-40 https://doi.org/10.1016/0044-8486(90)90219-D
  45. Wilkinson, S.G. 1988. Gram-negative bacteria. p. 299-457. In: Microbial lipids, ed. by C. Ratledge and S.G. Wilkinson. Academic Press, London
  46. Yanagibayashi, M., Y. Nogi, L. Li, and C. Kato. 1999. Changes in the microbial community in Japan Trench sediment from a depth of 6292m during cultivation without decompression. FEMS Microbiol. Lett., 170, 271-279 https://doi.org/10.1111/j.1574-6968.1999.tb13384.x
  47. Yazawa, K. 1996. Production of eicosapentaenoic acid from marine bacteria. Lipids, 31, 8297-8300
  48. Zelles, L. and Q.Y. Bai. 1994. Fatty acid patterns of phospholipids and lipopolysaccharides in environmental samples. Chemosphere, 28, 391-411 https://doi.org/10.1016/0045-6535(94)90136-8
  49. Zelles, L., Q.Y. Bai, R. Rackwitz, D. Chadwick, and F. Beese. 1995. Determination of phospholipid- and lipopolysaccharide derived fatty acids as an estimate of microbial biomass and community structure in soils. Biol. Fert. Soils, 19, 115-123 https://doi.org/10.1007/BF00336146