Effects of the Co-treatment of Municipal Wastewater with Microwave-Irradiated Excess Sludge on the Performance of the Activated Sludge Process

초단파조사 처리된 잉여슬러지와 하수의 병합처리가 활성슬러지공법의 성능에 미치는 영향

  • Kim, Nam-Chul (School of Environmental and Civil Engineering, Inha University) ;
  • Jang, Myung-Bae (School of Environmental and Civil Engineering, Inha University) ;
  • Cho, Yun-Kyung (Department of Civil Environmental Engineering, University of Wisconsin-Madison) ;
  • Cho, Kwang-Myeung (School of Environmental and Civil Engineering, Inha University)
  • 김남철 (인하대학교 환경토목공학부) ;
  • 장명배 (인하대학교 환경토목공학부) ;
  • 조윤경 (위스콘신대학교 토목환경공학부) ;
  • 조광명 (인하대학교 환경토목공학부)
  • Published : 2007.03.31

Abstract

The purpose of this research was to investigate the effects of the co-treatment of municipal wastewater with microwave-irradiated excess sludge on the treatment efficiency and excess sludge production of the activated sludge process. When 250 mL of excess sludge with a MLSS concentration of approximately 2,000 mg/L was microwave-irradiated at $20^{\circ}C$ for $40\sim300$ sec by a microwave oven (2,450 MHz, 700 W), the temperature of the sludge increased at a rate of approximately $20^{\circ}C/min$ and the SCOD, TKN and T-P concentrations of the sludge showed the highest increase in the irradiation time of $40\sim130$ sec. And, the oxygen uptake rate measurement of the sludge microorganism suggested most of the microorganisms in the sludge were destroyed at an irradiation time above 130 sec(above $65^{\circ}C$). When the municipal wastewater and microwave-irradiated excess sludge was co-treated by the activated sludge process, almost no effect was observed in the pH and alkalinity of both the influent and effluent, but the influent concentrations of SS, COD, T-N and T-P increased. Even though the effluent SS, BOD and T-P concentrations showed almost no effect, the COD and TKN concentrations increased. The microbial yield coefficient decreased at a rate of 0.91 g SS/g COD removed as the irradiation ratio increased at a rate of 1 g SS/g SS-day.

본 연구는 초단파조사 처리된 잉여슬러지를 하수와 함께 활성슬러지공법으로 처리할 때 하수처리효율과 잉여슬러지 발생량에 미치는 영향을 파악하기 위하여 실시되었다. 온도가 $20^{\circ}C$이고 MLSS농도가 약 2,000 mg/L인 250 mL의 잉여슬러지를 발진주파수가 2,450 MHz이고 정격고주파출력이 700 W인 전자렌지(microwave oven)로 초단파조사 처리한 결과 조사시간이 1분 증가함에 따라 수온이 약 $20^{\circ}C$씩 증가하였으며, 슬러지의 SCOD, TKN 및 T-P 농도는 모두 $40\sim130$ sec의 조사시간에서 가장 많이 증가하였다. 그리고 혼합액 미생물의 산소섭취율을 측정한 결과 130 sec 이상의 조사시간($65^{\circ}C$ 이상)에서는 혼합액의 미생물이 거의 사멸하는 것으로 나타났다. 잉여슬러지를 초단파조사 처리한 다음 하수와 혼합시켜 활성슬러지공법으로 처리하였을 때 유입수 및 처리수의 pH 및 알칼리도에는 거의 영향이 없었으나, 유입수의 SS, COD, T-N 및 T-P 농도는 증가하였으며, 처리수의 SS, BOD 및 T-P 농도는 거의 영향을 받지 않았으나 COD 및 TKN 농도는 증가하였다. 그리고 초단파 조사비가 1 g SS/g SS-day 증가할수록 미생물성장계수 값은 0.91 g SS/g COD removed의 율로 감소하였다.

Keywords

References

  1. Vesilind, P. A. and Spinosa, L., 'Production and regulations,' Sludge into Biosolids - Processing, Disposal, Utilization, Spinosa, L. and Vesilind, P. A.(Eds.), IWA Publishing, London, 3 - 18(2001)
  2. Egemen, E., Corpening, J., and Nirmalakhadan, N., 'Evaluation of an ozonation system for reduced waste sludge generation,' Water Sci. Technol., 44(2-3), 445-562(2001)
  3. Kroiss, H., 'What is the potential for utilizing the resources in sludge?,' Water. Sci. Technol., 49(10), 1-10(2004)
  4. Canales, A. P. and Poles, J. L., 'Decreased sludge production strategy for domestic wastewater treatment,' Water Sci. Technol., 30(8), 97-106(1994)
  5. Kim, J. S., Lee C. H., and Chang I. S., 'Effect of pump shear on the performance of a crossflow membrane bioreactor,' Water Res., 35(9), 2137-44(2001) https://doi.org/10.1016/S0043-1354(00)00495-4
  6. Yoon, S. H., Kang, I. J., and Lee, C. H., 'Fouling of inorganic membrane and flux enhancement in membranecoupled anaerobic bioreactor,' Sep. Sci. Technol., 34(5), 709 -724(1999) https://doi.org/10.1080/01496399908951140
  7. Chiu, Y. C., Chang, C. N., Lin, J. G., and Huang, S. J., 'Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion,' Water Sci. Technol., 36(11), 155 - 162(1997)
  8. Oh, S. E., 'Improvement of anaerobic digestion rate of biosolids in waste activated sludge(WAS) by ultrasonic pretreatment,' Environ. Eng. Res (Jour. Korean Soc. of Environ. Eng.), 11(3), 143 - 148(2006) https://doi.org/10.4491/eer.2006.11.3.143
  9. Muller, J. A., 'Prospects and problems of sludge pretreatmnet processes,' Water Sci. Technol., 44(10), 121 - 128(2001)
  10. Jolis, D., Jones, B., Mameri, M., Kan, H., and Jones, S., 'Thermal hydrolysis pretreatment for high solids anaerobic digestion,' Proceedings of 10th Anaerobic Digestion World Congress, Vol. II, pp. 1113 - 1120, Montreal, Canada, Aug. 29-Sept. 2(2004)
  11. Skiadas, I. V., Gavala, H. N., Lu, J., and Ahring, B. K., 'Thermal pre-treatment of primary and secondary sludge at 70$\circ$C prior to anaerobic digestion,' Proceedings of 10th Anaerobic Digestion World Congress, Vol. II, pp. 1121$\circ$C 1124, Montreal, Canada, Aug. 29-Sept. 2(2004)
  12. Kim, K., Fujita, M., Daimon, H., and Fujie, K., 'Application of hydrothermal reaction for excess sludge reuse as carbon sources in biological phosphorus removal,' Water Sci. Technol., 52(10-11), 533-541(2005)
  13. Camacho, P., Ginestet, P., and Audic, J.-M., 'Understanding the mechanism of thermal disintegrating treatment in the reduction of sludge production,' Water Sci. Technol., 52(10-11), 235-245(2005)
  14. Chauzy, J., Graja, S., Gerardin, F., Cretenot, D., Patria, L., and Fernandes, P., 'Minimization of excess sludge production in a WWTP by coupling thermal hydrolysis and rapid anaerobic digestion,' Water Sci. Technol., 52 (10-11), 255 -263(2005)
  15. Yasui, H., Nakamura, K., Sakuma, S., Iwasaki, M., and Sakai, Y. A, 'Full-scale operation of a novel activated sludge process without excess sludge production,' Water Sci. Technol., 34(3-4), 395-404(1996) https://doi.org/10.1016/0273-1223(96)00604-X
  16. Di laconi, C., Bonemazzi, F., Lopez, A, and Ramadori, R., 'Integration of chemical and biological oxidation in a SBBR for tannery wastewater treatment,' Water. Sci. Technol., 50(10), 107-114(2004)
  17. Yeom, I. T., Lee, K. R., Choi, Y. G., Kim, H. S., Kwon, J. H., Lee, U. J., and Lee, Y. H., 'A pilot study on accelerated sludge degradation by a high-concentration membrane bioreactor coupled with sludge pretreatment,' Water Sci. Technol., 52(10-11), 201-210(2005)
  18. Yasui, H., Matsuhashi, R., Noike, T., and Harada, H., 'Anaerobic digestion with partial ozonation minimises greenhouse gas emission from sludge treatment and disposal,' Water Sci. Technol., 53(3), 255-263(2006)
  19. Collins, A. G., Mitra, S., and Pavlostathis, S. G., 'Microwave heating for sludge dewatering and drying,' J. WPCF, 63(6), 921-924(1991)
  20. Banik, S., Bandyopadhyay, S., and Ganguly, S., 'Bio-effects of microwave - a brief review,' Biores. Technol., 87, 155-159(2003) https://doi.org/10.1016/S0960-8524(02)00169-4
  21. Tsai, T. S., 'A microwave method for the extraction of cellular ATP,' J. Biochem. Meth., 13(6), 343 - 346(1986) https://doi.org/10.1016/0165-022X(86)90041-2
  22. Fung, D. Y. C. and Cunningham, F. E., 'Effects of microwaves on microorganism in foods,' J. Food Prot., 43, 641-650(1980) https://doi.org/10.4315/0362-028X-43.8.641
  23. Woo, I.-S., Rhee, I.-K., and Park, H.-D., 'Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure,' Appl. Environ. Microbiol., 66, 2243-2247(2000) https://doi.org/10.1128/AEM.66.5.2243-2247.2000
  24. Hong, S. M., Park, J. K., and Lee, Y. O., 'Mechanism of microwave irradiation involved in the destruction of fecal coliforms from biosolids,' Water Res., 38, 1615-1625(2004) https://doi.org/10.1016/j.watres.2003.12.011
  25. Wojciechowska, E., 'Application of microwaves for sewage sludge conditioning,' Water Res., 39, 4749-4754(2005) https://doi.org/10.1016/j.watres.2005.09.032
  26. Park, B., Ahn, J.-H., Kim, J., and Hwang, S., 'Use of microwave pretreatment for enhanced anaerobiosis of secondary sludge,' Water Sci. Technol., 50(9), 17-23(2004)
  27. Hong, S.-M., Park, J.-K., Lee, Y-O., and Park, C.-H., 'Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance,' Daewoo Const. Technol. Report, 28, 76-86(2006)
  28. Eskicioglu, C., Kennedy, K. J., and Droste, R. L., 'Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment,' Water Res., 40, 3725 - 3736(2006) https://doi.org/10.1016/j.watres.2006.08.017
  29. Rittmann, B. E. and McCarty, P. L., Environmental Biotechnology : Principles and Applications, McGraw-Hill (2001)
  30. Boehler, M. and Siegrist, H., 'Potential of activated sludge disintegration,' Water Sci. Technol., 53(12), 207-216(2006) https://doi.org/10.2166/wst.2006.423
  31. Saktaywin, W., Tsuno, H., Nagare, H., and Soyama, T., 'Operation of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery,' Water Sci. Technol., 53(12), 217-227(2006)
  32. Sakai, Y., Fukase, T., Yasui, H., and Shibata, M., 'An activated sludge process without excess sludge production,' Water Sci. Technol., 36(11), 163 -170(1997) https://doi.org/10.1016/S0273-1223(97)00704-X
  33. Yasui, H. and Shibata, M., 'An innovative approach to reduce excess sludge production in the activated sludge process,' Water Sci. Technol., 30(9), 11-20(1994)