Effects of Activated Carbon Types and Service Life on Removal of Odorous Compounds: Geosmin and 2-MIB

활성탄 재질과 사용연수에 따른 Geosmin과 MIB 흡착특성

  • Lee, Hwa-Ja (Water Quality Research Institute, Waterworks Headquarter) ;
  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter) ;
  • Lee, Chul-Woo (Hyorim Industries Inc) ;
  • Bae, Sang-Dae (Department of Environmental Engineering, Silla University) ;
  • Kang, Lim-Seok (Department of Environmental Engineering, Pukyong National University)
  • 이화자 (부산광역시 상수도사업본부 수질연구소) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 이철우 (효림산업) ;
  • 배상대 (신라대학교 환경공학과) ;
  • 강임석 (부경대학교 환경공학과)
  • Published : 2007.04.30

Abstract

Adsorption performance of odorous compounds such as geosmin and 2-MIB on granular activated carbon were evaluated in this study. The coal-based activated carbon was found more effective than other carbons in adsorption of geosmin and 2-MIB. The wood-based virgin activated carbon was less effective than coconut- and coal-based carbon in adsorption nevertheless having larger pore volume and specific surface area than others carbons. The maximum adsorption capacity(X/M) of coal-based activated carbon for geosmin and 2-MIB was $1.2\sim1.9$ and $2.1\sim2.6$ times larger than coconut- and wood-based virgin activated carbon, respectively. Carbon usage rate (CUR) of coal-, coconut- and wood-based virgin activated carbons for geosmin and 2-MIB were 1.72 and 1.44 g/day, 1.72 and 2.05 g/day and 2.12 and 1.90 g/day, respectively. In the evaluation of adsorption isotherm of geosmin and 2-MIB for coal-, coconut- and wood-based virgin activated carbons, k value of 2-MIB was lower than geosmin, It menas 2-MIB is more difficult to remove by activated carbon adsorption than geosmin. The relationship of max. adsorption versus total pore volume of coconut- and wood-based virgin and used activated carbon for geosmin and 2-MIB were $y=264,459\times-79,047(R^2=0.95)$, $y=319,650\times-101,762(R^2=0.93)$.

활성탄 재질별 geosmin과 2-MIB의 최대 흡착량은 석탄계 재질의 활성탄이 가장 우수한 것으로 나타났고, 다음으로 야자계, 목탄계 활성탄 순으로 나타났으며, geosmin과 2-MIB에 대한 석탄계 활성탄의 최대 흡착량(X/M)은 신탄의 경우 야자계와 목탄계 활성탄에 비해 각각 $1.2\sim1.9$배 및 $2.1\sim2.6$배 정도 높은 것으로 조사되었다. 또한, 3.1년 사용탄의 경우는 석탄계와 목탄계 재질의 활성탄에서 높게 나타났으며, 5.9년 사용탄의 경우는 목탄계 재질의 활성탄이 석탄계 재질의 활성탄보다도 높게 나타났다. 활성탄에서의 흡착용량을 나타내는 k값의 경우 활성탄 재질별, 사용연수별 geosmin과 2-MIB에 대해 전체적으로 geosmin이 크게 나타나고 있어 활성탄 흡착공정에서 2-MIB 보다 제거가 용이한 것으로 조사되었다. 활성탄 사용율(CUR)은 석탄계 재질의 활성탄이 geosmin과 2-MIB에 대해 1.72 g/day 및 1.44 g/day, 야자계나 목탄계 활성탄의 경우는 각각 1.72와 2.05 g/day 및 2.12와 1.90 g/day의 활성탄을 사용하여야만 제어가 가능한 것으로 조사되었으며, 또한, 3.1년과 5.9년 사용탄의 경우는 목탄계 재질의 활성탄이 geosmin과 2-MIB에 대해 각각 3.13과 4.57 g/day 및 2.87과 4.14 g/day로 나타나 다른 재질의 활성탄들에 비해 적은 양으로도 geosmin과 2-MIB를 제어할 수 있는 것으로 나타났다. 석탄계와 야자계 재질의 신탄, 3.1년 및 5.9년 사용탄들에 대해 geosmin과 2-MIB의 최대 흡착량(ng/g)과 비표면적$(m^2/g)$ 및 총 세공용적$(cm^3/g)$에 대한 상관성 조사결과, 최대 흡착량은 비표면적 보다는 총 세공용적이 높은 상관성을 가지는 것으로 나타났으며, 최대 흡착량과 총 세공용적의 상관식은 geosmin의 경우는 $y=264,459\times-79,047(R^2=0.95)$, 2-MIB는 $y=319,650\times-101,762(R^2=0.93)$으로 나타났다.

Keywords

References

  1. Suffet, I. H., Mallevialle, J. and Kawczynski, E., Advances in Taste-and-Ordor Treatment ami Control, AWWARF, Denver, Colorado(1995)
  2. Suffet, I. H., Corado, A., Chou, D., McGuire, M. J., and Butterworth, S., 'AWW A taste and odor survey,' J. AWWA.,88, 168-180(1996) https://doi.org/10.1002/j.1551-8833.1996.tb06542.x
  3. Gerber, N. N. and LeChavalier, H. A., 'Geosmin, an earthy-smelling substance isolated from actinomycetes,' Applic. Microbiol., 13, 935(1965)
  4. Rosen, A. A., Mashni, C. I. and Safferrnan, R. S., 'Recent developments in the chemistry of odor in water: the cause of earthy/musty odor,' Water Treat. Examin., 19, 106(1970)
  5. Meng, A. K. and Suffet, I. H., 'A procedure for correlation of chemical and sensory data in drinking water samples by principal component factor analysis,' Environ. Sci. Technol., 31, 337-345(1997) https://doi.org/10.1021/es950776d
  6. Rashash, D. M. C., Dietrich, A. M., and Hoehn, R. C., 'FPA of selected odorous compounds,' J. AWWA., 89, 131-141(1997) https://doi.org/10.1002/j.1551-8833.1997.tb08213.x
  7. Lalezary, S., Pirbazari, M., and McGuire, M. J., 'Evaluating activated carbons for removing low concentrations of taste-producing and odor-producing organics,' J. AWWA., 78(11), 76-82(1986)
  8. Wnorowski, A. D., 'Tastes and odors in the aquatic environment: a review,' Water SA., 18(3), 203-214(1992)
  9. Cook, D., Newcombe, G., and Sztajnbok, P., 'The application of powdered activated carbon for MIB and geosmin removal: predicting PAC doses in four raw waters,' Water Res., 35(5), 1325-1333(2001) https://doi.org/10.1016/S0043-1354(00)00363-8
  10. Gillogly, T., Snoeyink, V. L., Elarde, J. R., Wilson, C. M., and Royal, E. P., '14C-MIB adsorption on PAC in natural water,' J. AWWA, 90(1), 98-108(1998) https://doi.org/10.1002/j.1551-8833.1998.tb08364.x
  11. Considine, R., Denoyel, R., Pendleton, P., Schumann, R., and Wong, S. H., 'The influence of surface chemistry on activated carbon adsorption of 2-methylisobomeol from aqueous solution,' Colloids Surfaces A, 179(2-3), 271-280(2001) https://doi.org/10.1016/S0927-7757(00)00647-6
  12. Pendleton, P., Wong, S. H., Schumann, R., Levay, G., Denoyel, R., and Rouquero, J., 'Properties of activated carbon controlling 2-Methylisobomeol adsorption,' Carbon, 35(8), 1141-1149(1997) https://doi.org/10.1016/S0008-6223(97)00086-9
  13. Newcombe, G., Drikas, M., and Hayes, R., 'Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisobomeol,' Water Res., 31(5), 1065-1073(1997) https://doi.org/10.1016/S0043-1354(96)00325-9
  14. Lalezary-Craig, S., Pirbazari, M., Dale, M. S., Tanaka, T. S., and McGuire, M. J., 'Optimizing the removal of geosmin and 2-methylisobomeol by powdered activated carbon,' J. AWWA, 80(3), 73-80(1988)
  15. Gillogly, T., Snoeyink, V. L., Holthouse, A., Wilson, C. M., and Royal, E. P., 'Effect of chlorine on PAC's ability to adsorb MIB,' J. AWWA, 90(2), 107-114(1998)
  16. 손희종, 노재순, 김상구, 배석문, 강임석, '활성탄 공정에서의 염소 소독부산물 제거특성,' 대한환경공학회지, 27(7), 762-770(2005)
  17. Pirbazari, M., Ravindran, V., Badriyha, B. N., Craig, S., and McGuire, M. J., 'GAC adsorber design protocol for the removal of off-flavors,' Water Res., 27(7), 1153-1166(1993) https://doi.org/10.1016/0043-1354(93)90007-5
  18. 한국표준협회, KS 활성탄 시험방법, KS M 1802(1998)
  19. 환경부, 수처리제의 기준과 규격 및 표시기준, 환경부 고시 제1999-173호(1999)
  20. Benanou, D., Acobas, F., Roubin, M. R., David, F., and Sandra, P., 'Analysis of off-flavors in the aquatic environment by stir bar sorptive extraction-thermal desorption-capillary GC/MS olfactometry,' Anal Bioanal Chem., 376, 69-77(2003) https://doi.org/10.1007/s00216-003-1868-3
  21. Sandra, P., Tienport, B., Vercammen, J., Tredoux, A., Sandra, T., and David, F., 'Stir bar sorptive extraction applied to the determination of dicarboximide fungicides in wine,' J. Chromatography A, 928, 117-126(2001) https://doi.org/10.1016/S0021-9673(01)01113-X
  22. Benjits, T., Vercammen, J., Dams, R., Lambert, W., and Sandra, P., 'Stir bar sorptive extraction-thermal desorption-capillary gas chromatography-mass spectrometry applied to the analysis of polychlorinated biphenyls in human sperm,' J. Chromatography B, 755, 137-142 (2001) https://doi.org/10.1016/S0378-4347(01)00048-2
  23. Snoeyink, V. L., Adsorption of organic compounds, In Water Quality and Treatment: a Handbook of Community Water Supplies, 4th Ed., Edited by Pontius, F. W., McGraw-Hill Inc., New York, pp. 781-855(1990)
  24. Choi, K. J., Kim, S. G., Kim, C. W., and Kim, S. H., 'Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A,' Chemosphere, 58(11), 1535-1545(2005) https://doi.org/10.1016/j.chemosphere.2004.11.080
  25. Chen, G., Dussert, B. W., and Suffet, I. H., 'Evaluation of granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water,' Water Res., 31(5), 1155-1163(1997) https://doi.org/10.1016/S0043-1354(96)00362-4
  26. Bjelopavlic, M., Newcombe, G., and Hayes, R., 'Adsorption of NOM onto activated carbon: effect of surface charge, ion strength and pore volume distribution,' J. Colloid and Interface Science, 210, 271-280(1999) https://doi.org/10.1006/jcis.1998.5975
  27. Solum, M. S., Pugmire, R. J., Jagtoyen, M., and Derbyshire, F., 'Evolution of carbon structure in chemically activated wood,' Carbon, 33(9), 1247-1254(1995) https://doi.org/10.1016/0008-6223(95)00067-N
  28. Torregrosa, R. and Martin-Martinez, J. M., 'Activation of lignocellulosic materials: a comparison between chemical, physical and combined activation in terms of porous structure,' Fuel, 70, 1173(1991)
  29. Wigmans, T., 'Industrial aspects of production and use of activated carbons,' Carbon, 27(1), 13(1989)