낙동강 원수에서 추출한 Humic Acid에서의 염소처리에 의한 THM 생성 특성 평가

Evaluation of the Characteristics of THM Formation by Chlorination in Extracted Humic Acid from Nakdong River

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 노재순 (부산광역시 상수도사업본부 수질연구소) ;
  • 배상대 (신라대학교 환경공학과) ;
  • 최영익 (신라대학교 환경공학과) ;
  • 정철우 (울산산업진흥TP 전략산업기획단)
  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquater) ;
  • Roh, Jae-Soon (Water Quality Research Institute, Waterworks Headquater) ;
  • Bae, Sang-Dae (Department of Environmental Engineering, Silla University) ;
  • Choi, Young-Ik (Department of Environmental Engineering, Silla University) ;
  • Jung, Chul-Woo (Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park)
  • 발행 : 2007.04.30

초록

THM 생성은 염소접촉 후 4시간까지 선형적인 증가추세를 보이며, 많은 양의 THM이 생성되는 것으로 나타났으며, 반응 30분만에 168시간 동안 생성된 양의 총 $25\sim43%$의 비율을 차지하였다. 또한, 수중의 브롬이온 농도에 따른 THM 생성특성 조사에서 유기성 전구물질인 humic acid의 농도는 일정하고, 브롬이온의 농도만 $0\sim50{\mu}g/L$까지 변화시켜 염소처리하였을 경우에는 생성되는 총 THM의 농도는 접촉시간 별로 큰 차이가 없는 것으로 나타났다. 수온변화에 따른 THM 생성특성 조사에서 수온이 낮은 $4^{\circ}C$일 때는 PF(parabolic formation) phase로 접어들어서도 THM 생성량이 계속적으로 증가하는 양상을 나타내었으며, $20^{\circ}C$$35^{\circ}C$의 경우에는 IF(instantaneous formation) phase까지 급격한 증가추세를 보인 후 PF phase에 도달하여서는 그 증가추세가 둔화되는 것으로 나타났다. pH 변화에 따른 THM 생성특성 조사에서 pH가 5일 경우 IF phase까지 증가추세를 보인 후, PF phase로 접어들어서도 계속적으로 증가하는 것으로 나타났지만 pH가 7과 pH가 9의 경우에는 IF phase까지 급격한 증가추세를 보인 후 PF phase에 도달하여서는 그 증가 경향이 아주 둔화되는 것을 볼 수 있으며, 이런 현상은 pH가 9일 경우에는 더욱 두드러지게 나타났다.

The purpose of this study was to determine the several factors for affecting chlorine disinfection by-products(DBPs) characteristics by reacting chlorine and organic matters in the aquatic phase. The results of this research yield the following specific conclusions: The concentration of trihalomethanes(THMs) was increased with increasing dissolved organic carbon(DOC), and a trend of THMs formation was parabolic with increasing organic matters. Formations of THMs increased straightly for the first 4 hours and the amounts of producted THMs for the 30 minutes were up to $25\sim43%$ in the entire experiment periods(168 hours). When keeping up the concentration of organic matters at constant and changing that of bromide, the quantity of formed THMs did not show distinguished difference with the reaction times. THMs were gradually increased at $4^{\circ}C$ even though a reaction phase was parabolic formation(PF) phase. However, THMs were increased rapidly in the instantaneous formation(IF) phase and then became slowdown in the PF phase between $20\sim35^{\circ}C$. THMs were gradually increased although entering in the PF phase at pH 5. However, THMswere increased rapidly in the IF phase and then became slowdown in the PF phase at pH 7 and pH 9, and these treads were much more clear at pH 9 than at pH 7.

키워드

참고문헌

  1. Mallevialle, J., Odendaal, P. E., and Wiesner, M. R., Water Treatment Process, Mcgraw-Hill(1996)
  2. Stumm, W. and Morgan, J. J., Aquatic Chemistry, 2nd Ed., Wiley, New York(1981)
  3. Ashbolt, N. J., 'Risk analysis of drinking water microbial contamination versus disinfection by-products(DBPs),' Toxicology, 198(1-3), 255-262(2004) https://doi.org/10.1016/j.tox.2004.01.034
  4. Singer, P. C., Obolensky, A., and Greiner, A., 'DBPs in chlorinated North Carolina drinking waters,' J. AWWA, 87(10), 83(1995)
  5. Krasner, S. W., Chemistry of disinfection by-product formation. Formation and Control of Disinfection By-Products in Drinking Water, Singer, P. C.(Ed), AWWA, pp. 27-52(1999)
  6. Fawell, J., Robinson, D., Bull, R., Birnbaum, L., Boorman, G., Butterworth, B., Daniel, P., Galal-Gorchev, H., Hauchman, F., Julkunen, P., Klaassen, C., Krasner, S., Orme-Zavaleta, J., Rief, J., and Tardiff, R., 'Disinfection by-products in drinking water: critical issues in health effects research,' Environ. Health Perspect., 105(1), (1997)
  7. Richardson, S. D., 'Disinfection by-products and other emerging contaminants in drinking water,' Trends in Analytical Chemistry, 22(10), 666-684(2003) https://doi.org/10.1016/S0165-9936(03)01003-3
  8. Kim, J., Chung, Y., Shin, D., Kim, M., Lee, Y., Lim, Y., and Lee, D., 'Chlorination by-products in surface water treatment process,' Desalination, 151, 1-9(2002) https://doi.org/10.1016/S0011-9164(02)00967-0
  9. Lee, K. J., Kim, B. H., Hong, J. E., Pyo, H. S., Park, S. J., and Lee, D. W., 'A study on the distribution of chlorination by-products in treated water in Korea,' Water Res., 35(12), 2861-2872(2001) https://doi.org/10.1016/S0043-1354(00)00583-2
  10. Bull, R. J. and Kopfter, F. C, 'Formation and occurrence of disinfectant by-products,' In Heath Effects of Disinfectans and Disinfection By-Products, pp. 55-103. Denver, AWWARF(1991)
  11. Amy, G. L., Debroux, J., Sinha, S., Brandhuber, P., and Cho, J., 'Occurrence of disinfection by-products precursors in source water and DBPs in finished waters,' Proceedings of the Fourth International Workshop on Drinking Water Quality Management and Treatment Technology, 59-70(1986)
  12. Thurman, E. M. and Malcolm, R. L., 'Preparative isolation of aquatic humic substances,' Environ. Sci. Technol., 15(4), 463-466(1981) https://doi.org/10.1021/es00086a012
  13. Westerhoff, P., Chao, P., and Mash, H., 'Reactivity of natural organic matter with aqueous chlorine and bromine,' Water Res., 38, 1502-1513(2004) https://doi.org/10.1016/j.watres.2003.12.014
  14. 손희종, 정철우, 강임석, '상수원수중의 천연유기물질 특성과 염소 소독부산물 생성의 관계,' 대한환경공학회지, 26(4), 457-466(2004)
  15. 손희종, 노재순, 정철우, 이철우, 강임석, '상수원수중에 함유된 천연유기물질 분자량 크기가 염소 소독부산물 생성에 미치는 영향,' 대한환경공학회지, 26(11), 1278-1290(2004)