Spectroscopic Characterization and Seasonal Distribution of Aquatic Humic Substances Isolated from Han River Water

한강원수로부터 분리된 수중휴믹물질의 계절적 분포와 분광학적 특성분석

  • Kim, Hyun-Chul (Water Environment and Remediation Center, Korea Institute of Science and Technology) ;
  • Lee, Seock-Heon (Water Environment and Remediation Center, Korea Institute of Science and Technology) ;
  • Kim, Kyung-Ju (Department of Urban Engineering, Graduate School of Engineering, University of Tokyo) ;
  • Yu, Myong-Jin (Department of Environmental Engineering, University of Seoul)
  • 김현철 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 이석헌 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 김경주 (동경대학대학원 공학계연구과도시공학) ;
  • 유명진 (서울시립대학교 환경공학부)
  • Published : 2007.05.31

Abstract

Humic substances(HS) from Han River water was physic-chemically isolated by fractionational methods to investigate the seasonal distribution and to characterize the properties compared with intrinsic humic materials. Various HS samples were analyzed by element, Fourier transform infrared(FT-IR), proton nuclear magnetic resonance$(^1H-NMR)$ and fluorescence analyzers. The portion of HS from Han River water(HRHS) was 47.0% on the average, however it appeared that rainfall event brought about higher fraction of HS in Han River water by the periodic investigation. Aromaticity and humification degree of the HRHS were relatively lower than those of intrinsic humic materials originated from decomposing vegetation. FT-IR, $^1H-NMR$ and fluorescence spectroscopy showed the distinct differences between HRHS and intrinsic humic materials. Commercial humic materials could not represent structural and functional characteristics of local HS. The fluorescence spectroscopy, a relatively simple measurement, was found most useful tool to estimate humification degree for humic materials from particular sources.

본 연구에서는 한강원수로부터 물리화학적인 분리방법으로 휴믹물질(HS; humic substances)을 분리하여 HS의 계절별 분포특성을 조사하고, 식물분해산물에 의한 유기물 구성이 지배적인 자연형 하천수로부터 추출된 HS와 함께 다양한 분광학적 특성분석을 통하여 구조화학적 특성을 비교하고 그 기원특성을 평가하였다. 한강원수로부터 분리된 HS(HRHS)의 구성분율은 연평균 47.0%로, 건기에 비해서 우기에 상대적으로 높은 것으로 나타났다. HRHS는 다른 지역의 수계에서 추출된 HS보다 방향성(aromaticity)과 부식화도 (humification degree)가 상대적으로 낮은 것으로 조사되었으며, 이는 수환경계에서 부식화가 진행되는 유기물질의 기원특성과 이들 물질이 축합반응(polymerization)에 기여하는 정도에 따라서 그 구조화학적 성질이 차이를 나타내기 때문으로 보인다. 적외선분광(FT-IR)과 양성자핵자기공명$(^1H-NMR)$ 그리고 형광(fluorescence)분석은 HRHS와 상용화된 HS 간의 구조화학적 차이를 명확히 나타내었으며, FT-IR 및 $^1H-NMR$과 같은 전통적인 분광분석법에 비해서 상대적으로 단순화된 전처리과정과 짧은 응답시간을 요하는 형광분석법이 분석절차상 HS의 방향성 및 부식화도를 평가하기 위한 가장 효율적인 분석수단으로 평가되었다.

Keywords

References

  1. Cabaniss, S. E. and Shuman, M. S., 'Copper binding by dissolved organic matter : I. Suwannee river fulvic acid equilibria,' Geochim. Cosmochim. Acta, 52, 185-193(1988) https://doi.org/10.1016/0016-7037(88)90066-X
  2. Ma, H., Kim, S. D., Cha, D. K., and Allen, H. E., 'Effect of kinetics of complexation by humic acid on toxicity of copper to Ceriodaphnia dubia,' Environ. Toxicol. Chem., 18, 828-837(1999) https://doi.org/10.1897/1551-5028(1999)018<0828:EOKOCB>2.3.CO;2
  3. Khan, E., Babcock, R. W., Suffet, I. H., and Stenstorm, M. K., 'Biodegradable dissolved organic carbon for indication wastewater reclamation plant performance and treated wastewater quality,' Water Environ. Res., 70, 1033-1040(1998) https://doi.org/10.2175/106143098X123363
  4. Siddiqui, M. S., Amy, G. L., and Murrhy, B. D., 'Ozone enhanced removal of natural organic matter from drinking water source,' Water Res., 31, 3098-3106(1997) https://doi.org/10.1016/S0043-1354(97)00130-9
  5. Bellar, T. A., Lichtenberg, J. J., and Korner, R. C., 'The occurrence of organohalide in chlorinated drinking water,' J. AWWA, 66, 703-706(1974) https://doi.org/10.1002/j.1551-8833.1974.tb02129.x
  6. Rook, J. J., 'Formation of haloform during chlorination of natural waters,' Water Treat. Exam, 23, 234-243(1974)
  7. Thurman, E. M., Organic Geochemical of Natural Waters, Kluwer Academic, Boston, MA, USA, pp. 497-498(1985)
  8. Kim, H. C., Yu, M. J., Myung, G. N., Koo, J. Y., and Kim, Y. H., 'Characterization of natural organic matter in advanced water treatment processes for DBPs control,' in Proceedings of the IWA Leading-Edge Conference on Water and Wastewater Treatment Technologies, IWA, Prague, Czech Republic, pp. 67-69(2004)
  9. Kusakabe, K., 'Decomposition of humic acid and reduction of trihalomethane formation potential in water by ozone with UV irradiation,' Water Res., 24, 781-785(1990) https://doi.org/10.1016/0043-1354(90)90036-6
  10. Pourmoghaddas, H. and Stevens, A. A., 'Relationship between trihalomethanes and haloacetic acids with total organic halogen during chlorination,' Water Res., 29(9), 2059-2062(1995) https://doi.org/10.1016/0043-1354(95)00026-H
  11. Lin, C-F., Liu, S-H., and Hao, O. J., 'Effect of functional groups of humic substances on UF performance,' Water Res., 35(10), 2395-2402(2001) https://doi.org/10.1016/S0043-1354(00)00525-X
  12. Malcolm, R. L. and MacCarthy, P., 'Limitations in the use of commercial humic acids in water and soil research,' Environ. Sci. Technol., 20, 904-911 (1986) https://doi.org/10.1021/es00151a009
  13. Davis, W. M., Eriekson, C. L., Johnston, C. T., Delfino, J. J., and Porter, J. E., 'Quantitative fourier transform infrared spectroscopic investigation of humic substance functional group composition,' Chemosphere, 38(12), 2913-2928(1999) https://doi.org/10.1016/S0045-6535(98)00486-X
  14. Thomsen, M., Lassen, P., Dobel, S., Hansen, P. E., Carlsen, L., and Mogensen, B. B., 'Characterisation of humic materials of different origin: A multivariate approach for quantifying the latent properties of dissolved organic matter,' Chemosphere, 49, 1327-1337(2002) https://doi.org/10.1016/S0045-6535(02)00335-1
  15. Peuravuori, J., Koivikko, R., and Pihlaja, K., 'Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy,' Water Res., 36, 4552-4562(2002) https://doi.org/10.1016/S0043-1354(02)00172-0
  16. 김현철, 유명진, '천연유기물질의 구조 및 화학적 특성이 오존소비속도에 미치는 영향,' 대한환경공학회지, 26(12), 1304-1311(2004)
  17. 김현철, 유명진, '재래식 정수처리 공정에서 수질계 휴믹물질의 구조 및 화학적 특성분석,' 대한환경공학회지, 27(1), 11-16(2005)
  18. Thurman, E. M. and Malcolm, R. L., 'Preparative isolation of aquatic humic substances,' Environ. Sci. Technol., 15, 463-466(1981) https://doi.org/10.1021/es00086a012
  19. IHSS home page: http://www.ihss.gatech.edu/
  20. Korshin, G. V., Li, C-W., and Benjamin, M. M., 'Momitoring the properties of natural organic matter through UV spectroscopy: A consistent theory,' Water Res., 31, 1787-1795(1997) https://doi.org/10.1016/S0043-1354(97)00006-7
  21. Yu, M. J., Kim, Y. H., Han, I., and Kim, H. C., 'Ozonation of Han River humic substances,' Water Sci. Technol., 46(11-12), 21-26(2002)
  22. Steelink, C., 'Implication of elemental characteristics of humic substances,' Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization, Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P.(Eds.), Wiley-Interscience, New York, pp. 181-209(1985)
  23. Christensen, J. B., Jensen, D. L., Gron, C., Filip, Z., and Christensen, T. H., 'Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater,' Water Res., 32, 125-135(1998) https://doi.org/10.1016/S0043-1354(97)00202-9
  24. Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P., Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation and Characterization, Wiley, New York(1985)
  25. Sposito, G., The Chemistry of Soils, Oxford, New York (1989)
  26. Stevenson, F. J., Humus Chemistry: Genesis, Composition, Reactions, John Wiley & Sons Inc., Canada, pp. 214, 285 -294(1994)
  27. Wilson, M. A., 'Application of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter,' J. Soil Sci., 32, 167-186(1981) https://doi.org/10.1111/j.1365-2389.1981.tb01698.x
  28. Ma, H., Allen, H. E., and Yin, Y., 'Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent,' Water Res., 35(4), 985-996(2001) https://doi.org/10.1016/S0043-1354(00)00350-X
  29. Kang, K. H., Shin H. S., and Park, H., 'Characterization of humic substances present in landfill leachates with different landfill ages and its implications,' Water Res., 36, 4023-4032(2002) https://doi.org/10.1016/S0043-1354(02)00114-8
  30. Coble, P. G., 'Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy,' Marine Chem., 51, 325-346(1996) https://doi.org/10.1016/0304-4203(95)00062-3
  31. Fabbricino, M. and Korshin, G. V., 'Probing the mechanisms of NOM chlorination using fluorescence: formation of disinfection by-products in Alento River water,' Water Sci. Technol: Water Supply, 4(4), 227-233(2004) https://doi.org/10.2166/ws.2004.0082