Adhesion and Transport of Bacteria in Iron-coated Media

철코팅 여재에서 박테리아의 부착 및 이동

  • Lee, Chang-Gu (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Park, Seong-Jik (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Choi, Nag-Choul (Environmental Biocolloid Engineering Laboratory, Seoul National University) ;
  • Kim, Song-Bae (Environmental Biocolloid Engineering Laboratory, Seoul National University)
  • 이창구 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 박성직 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 최낙철 (서울대학교 환경바이오콜로이드공학연구실) ;
  • 김성배 (서울대학교 환경바이오콜로이드공학연구실)
  • Published : 2007.07.31

Abstract

In this study, adhesion and transport of bacteria in positively-charged media was investigated with batch and column experiments. Bacterial species used in this study was Escherichia coli ATCC 11105(length: 2.2 ${\mu}m$, diameter: 0.6 ${\mu}m$) and media used were quartz sand(particle size distribution: 0.5-2.0 mm, mean diameter: 1.0 mm) and iron-coated sand. Batch results indicate that bacterial adhesion increased as the content of iron-coated media increased. At iron-coated media 0%(quartz sand 100%), around 46% of bacteria was adhered to media while at iron-coated media 100%(quartz sand 0%) about 97% was attached. Column results also show that bacterial adhesion was enhanced with an increase of iron-coated media content. As the iron-coated media content increased from 0 to 100%, bacterial adhesion increased from 8 to 94%. The experimental results demonstrate that positively-charged media could influence transport of bacteria in porous media.

본 연구에서는 양전하를 띤 여재 입자에서 박테리아의 부착 및 이동에 관한 연구를 위하여 회분 및 칼럼실험을 수행하였다. 본 실험에 사용된 박테리아는 E. coli ATCC 11105(길이: 2.2 ${\mu}m$ 직경: 0.6 ${\mu}m$)이었고, 여재는 석영모래(입경분포: 0.5-2.0 mm, 평균 입경: 1.0 mm)와 철코팅 모래이었다. 회분실험결과에 의하면 철코팅 함량이 증가함에 따라, 박테리아의 부착량이 증가하는 것으로 나타났다. 철코팅 모래의 함량 0%(석영모래 100%)에서는 약 46% 정도의 박테리아가 부착되었고, 철코팅 모래의 함량 100%(석영모래 0%)에서는 약 97% 정도의 박테리아가 부착되었다. 칼럼실험결과 또한 철코팅 함량이 증가함에 따라, 박테리아의 부착량이 증가하는 것을 보여주고 있다. 철코팅 모래의 함량이 0에서 100%로 증가함에 따라 박테리아의 부착량이 8에서 94%로 증가하였다. 본 연구의 실험결과를 통해 양전하를 띤 여재 입자가 박테리아의 이동에 영향을 미칠 수 있음을 알 수 있다.

Keywords

References

  1. Harvey, R. W., George, L. H., Smith, R. L., and LeBlanc, D. R., 'Transport of microspheres and indigenous bacteria through a sandy aquifer: Results of natural- and forced-gradient tracer experiments,' Environ. Sci. Technol., 23, 51-56(1989) https://doi.org/10.1021/es00178a005
  2. Rijnaarts, H. H. M., Norde, W., Bouwer, E. J., Lyklema, J., Zehnder, A. J. B., 'Bacterial adhesion under static and dynamic conditions,' Appl. Environ. Microbiol., 59, 3255-3265(1993)
  3. Sinton, L. W., Finlay, R. K., Pang, L., and Scott, D. M., 'Transport of bacteria and bacteriophages in irrigated effluent into and through an alluvial gravel aquifer,' Water, Air, Soil, Pollut., 98, 17-42(1997)
  4. Lahlou, M., Harms, H., Springael, D., and Ortega-Calvo, J. J., 'Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous media,' Environ. Sci. Technol., 34, 3649-3656(2000) https://doi.org/10.1021/es000021t
  5. Chen, G. and Zhu, H., 'Bacterial deposition in porous medium as impacted by solution chemistry,' Res. Microbiol., 155, 467-474(2004) https://doi.org/10.1016/j.resmic.2004.02.004
  6. Hall, J. A., Mailloux, B. J., Onstott, T. C., Scheibe, T. D., Fuller, M. E., Dong, H., and DeFlaun, M. F., 'Physical versus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments,' J. Contam. Hydrol., 76, 295-314 (2005) https://doi.org/10.1016/j.jconhyd.2004.11.003
  7. Tallon, P., Magajna, B., Lofranco, C., and Leung, K. T., 'Microbial indicators of faecal contamination in water: a current perspective,' Water, Air, Soil, Pollut., 166, 139-166(2005) https://doi.org/10.1007/s11270-005-7905-4
  8. Jamieson, R. C., Gordon, R. J., Sharples, K. E., Stratton, G. W., and Madani, A., 'Movement and persistence of fecal bacteria in agricultural soils and subsurface drainage water: a review,' Can. Biosys. Eng., 44, 1.1-1.9(2002)
  9. Stevik, T. K., Ausland, G., Jenssen, P. D., and Siegrist, R., 'Removal of E. coli during intermittent filtration of wastewater effluent as affected by dosing rate and media type,' Water Res., 33, 2088-2098(1999a) https://doi.org/10.1016/S0043-1354(98)00413-8
  10. Stevik, T. K., Ausland, G., hanssen, J. F., and Jenssen, P. D., 'The influence of physical and chemical factors on the transport of E. coli through biological filters for wastewater purification,' Water Res., 33, 3701-3706(1999b) https://doi.org/10.1016/S0043-1354(99)00077-9
  11. Walker, S. L., Redman, J. A., and Elimelech, M., 'Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport,' Langmuir, 20, 7736-7746(2004) https://doi.org/10.1021/la049511f
  12. Redman, J. A., Walker, S. L., and Elimelech, M., 'Bacterial adhesion and transport in porous media: role of the secondary energy minimum,' Environ. Sci. Technol., 38, 1777-1785(2004) https://doi.org/10.1021/es034887l
  13. Walker, S. L., Redman, J. A., and Elimelech, M., 'Influence of growth phase on bacterial deposition: interaction mechanisms in packed-bed column and radial stagnation point flow systems,' Environ Sci. Technol., 39, 6405-6411(2005) https://doi.org/10.1021/es050077t
  14. Foppen, J. W. A., Mporokoso, A., and Schijven, J. F., 'Determining straining of Escherichia coli from break-through curves,' J. Contam. Hydrol., 76, 191-210(2005) https://doi.org/10.1016/j.jconhyd.2004.08.005
  15. Sinton, L. W., 'Microbial contamination of alluvial gravel aquifers by septic tank effluent,' Water, Air, Soil, Pollut., 28, 407-425(1986)
  16. Sinton, L. W., Noonan, M. J., Finlay, R. K., Pang, L., and Close, M. E., 'Transport and attenuation of bacteria and bacteriophages in an alluvial aquifer,' New Zealand Marine Freshwater Res., 34, 175-186(2000) https://doi.org/10.1080/00288330.2000.9516924
  17. Pang, L., Close, M., Goltz, M., Sinton, L., Davies, H., Hall, C., Stanton, G., 'Estimation of septic tank setback distance based on transport of E. coli and F-RNA phages,' Environ. Inter., 29, 907-921(2003) https://doi.org/10.1016/S0160-4120(03)00054-0
  18. Smith, M. S., Thomas, G. W., White, R. E., and Ritonga, D., 'Transport of Escherichia coli through intact and disturbed soil colunms,' J. Environ. Qual., 14, 87-91(1985) https://doi.org/10.2134/jeq1985.00472425001400010017x
  19. Guber, A. K., Shelton, D. R., and Pachepsky, Y. A., 'Transport and retention of manure-borne coliforms in soil,' Vadose Zone J., 4, 828-837(2005) https://doi.org/10.2136/vzj2004.0097
  20. Scholl, M. A., Mills, A. L., Herman, J. S., and Hornberger, G. M., 'The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials,' J. Contam. Hydrol., 6, 321-336(1990) https://doi.org/10.1016/0169-7722(90)90032-C
  21. Mills, A. L., Herman, J. S., Hornberger, G. M., and Dejesus, T. H., 'Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand,' Appl. Environ. Microbial., 60, 3300-3306(1994)
  22. Knapp, E. P., Herman, J. S., Hornberger, G. M., Mills, A. L., 'The effect of distribution of iron-oxyhydroxide grain coatings on the transport of bacterial cells in porous media,' Environ. Geol. Water Sci., 33, 243-248(1998)
  23. Bolster, C. H., Mills, A. L., Hornberger, G. M., and Herman, J. S., 'Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces,' J. Contam. Hydrol., 50, 287-305(2001) https://doi.org/10.1016/S0169-7722(01)00106-1
  24. Truesdail, S. E., Lukasik, J., Farrah, S. R., Shah, D. O., and Dickinson, R. B., 'Analysis of bacterial deposition on metal (hydr)oxide-coated sand filter media,' J. Colloid Interface Sci., 203, 369-378(1998) https://doi.org/10.1006/jcis.1998.5541
  25. Lukasik, J., Cheng, Y-F., Lu, F., Tamplin, M., and Farrah, S.R., 'Removal of microorganisms from water by columns containing sand coated with ferric and aluminum hydroxides,' Water Res., 33, 769-777(1999) https://doi.org/10.1016/S0043-1354(98)00279-6
  26. Foppen, J. W. A. and Schijven, J. F., 'Transport of E. coli in columns of geochemically heterogeneous sediment,' Water Res., 39, 3082-3088(2005) https://doi.org/10.1016/j.watres.2005.05.023
  27. Toride, N., Leij, F. J., and van Genuchten, M. Th., 'The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments,' Research Report No. 137. U.S. Department of Agriculture, USA(1995)
  28. Stumm, W., and Morgan, J. J., 'Aquatic Chemistry, An Introduction Emphasizing Chemical Equilibria in Natural Waters,' 2nd Ed., Wiley, New York, USA(1981)