혐기성소화의 산발효과정에 있어서 동역학정수의 온도의존성

Temperature Dependence of the Kinetic Constants in Acidogenesis Process of Anaerobic Digestion

  • 차기철 (연세대학교 환경공학부, 환경과학기술연구소) ;
  • 정태영 (연세대학교 환경공학부, 환경과학기술연구소) ;
  • 유익근 (울산대학교 생명화학공학부) ;
  • 김동진 (한림대학교 환경시스템공학과)
  • Cha, Gi-Cheol (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Jeong, Tae-Young (Department of Environmental Engineering, YIEST, Yonsei University) ;
  • Yoo, Ik-Keun (School of Chemical Engineering & Bioengineering, University of Ulsan) ;
  • Kim, Dong-Jin (Department of Environmental System Engineering, Hallym University)
  • 발행 : 2007.07.31

초록

용해성 glucose를 기질로 하여 혐기성 산발효조에서 동역학정수에 대한 온도의존성을 검토하였다. 온도범위는 $15^{\circ}C$에서 $30^{\circ}C$이며, 포화정수$(K_s\upsilon)$와 증식수율(Y)은 온도의 상승에 따라 감소하였지만, 최대비기질소비속도$(\upsilon_{max})$는 증가하였다. 기질소비속도와 균체 증식속도의 온도보정인자$(Q_{10})$ 값은 각각 1.3에서 2.2, 1.5에서 2.2의 범위를 보였다. 최대비기질소비속도$(\upsilon_{max})$가 증식수율(Y) 보다 온도의 변화에 대하여 더 민감하였다. $20^{\circ}C$에서 $30^{\circ}C$까지의 온도영역에서 체류시간과 기질농도의 관계에 대한 시물레이션 모델은 $1/SRT={(6.53){\cdot}(1.038)^{T-20}{\cdot}(S/X)}/{(1.38){\cdot}(0.983)^{T-20}+(S/X)}$이다.

Temperature dependence of kinetic constants in the anaerobic acidogenesis was investigated using anaerobic chemostat-type reactor. Glucose was used as a substrate in this experiment. Temperature ranging from 15 to $30^{\circ}C$ were studied. The saturation constant$(k_s\upsilon)$ and growth yield(Y) decreased with increasing temperature, while the maximum specific substrate utilization rate$(\upsilon_{max})$ increased. A temperature correction factor$(Q_{10})$ values of the substrate utilization rate and bacteria growth rate were the range from 1.3 to 2.2 and 1.5 to 2.2, respectively. The growth yield(Y) for the acidogenesis process was less sensitive to temperature changes than the maximum specific substrate utilization rate$(\upsilon_{max})$. The simulation model of the relationship between the substrate and sludge retention time(SRT) at the temperature range of 20 to $30^{\circ}C$ is obtained as the following ; $1/SRT={(6.53){\cdot}(1.038)^{T-20}{\cdot}(S/X)}/{(1.38){\cdot}(0.983)^{T-20}+(S/X)}$.

키워드

참고문헌

  1. Hughes, D. E., Stafford, D. A., Wheatley, B. I., Baader, W., Lettinga, G., Nyns, E. J., Verstraete, W., and Wentworth, R. L., Anaerobic Digestion, Elsevier Biomedical Press, New York, pp. 3-13(1981)
  2. 日本下水道協會, 下水道試驗法(1985)
  3. 微生物硏究法懇談會編, 微生物學實驗法, 講談社, 日本, pp. 264-265(1990)
  4. Monod, J., 'The growth of bacterial cultures,' Annual Rev. of Microbiol., 3, 371(1949)
  5. Contois, D. E., 'Kinetics of bacterial growth, relationship between population density and specific growth rate of continuous culture,' J. of Gen. Microbiol., 21, 40(1959)
  6. Noike, T., Endo, G., Chang, J. E., Yaguchi, J. I. and Matsumoto, J. I., 'Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion,' Biotech. and Bioengin., 27, 1482-1489(1985) https://doi.org/10.1002/bit.260271013
  7. 遠藤銀朗, '嫌氣性消化の酸生成相に關する硏究,' 東北大學大學院博士學位論文(1980)
  8. Benedict, A. H. and Carlson, D. A., 'The real nature of the Streeter-Phelps temperature coefficient,' Water Sew. Works., 117, 54-57(1970)
  9. Lawrence, A. W. and McCarty, P. L., 'Kinetics of methane fermentation in anaerobic treatment,' J. Water Pollut. Control Fed., 41(2), R1-R7(1969)
  10. Novak, J. T., 'Temperature substrate interactions in biological treatment,' J. Water Pollut. Control Fed., 46(8), 1984-1995(1974)
  11. Benefield, L. D. and Randall, C. W., Biological Process Design for Wastewater Treatment, Prentice-Hall, Inc., Englewood Cliffs, N. J., USA, pp. 11-13(1980)
  12. Topiwala, H. and Sinclair, C. G., 'Temperature relationship in continuous culture,' Biotechnol. Bioeng., 13, 795-813(1971) https://doi.org/10.1002/bit.260130606
  13. Esner, A. A., Roels, J. A., and Kossen, N. W. F., 'The influence of temperature on the maximum specific growth rate of Klebsiella pneumoniae,' Biotechnol. Bioeng., 23, 1401-1405(1981) https://doi.org/10.1002/bit.260230620
  14. Mohr, P. W. and Krawiec, S., 'Temperature characteristics and arrhenius plots for normal psychrophiles, mesophiles and thermophiles,' J. of Gen. Microbiol., 121, 311-317(1980)
  15. Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., and Chandler, R. E., 'Model for bacterial culture growth rate throughout the entire biokinetic temperature range,' J. of Bacteriol., 154, 1222-1226(1982)
  16. Dinopoulou, G., Rudd, T., and John, N. L., 'Anaerobic acidogenesis of a complex wastewater : I. The influence of operational parameters on reactor performance,' Biotechnol. Bioeng., 31, 958-968(1987) https://doi.org/10.1002/bit.260310908
  17. Benedict, A. H. and Carlson, D. A., 'Rational assessment of the Streeter-Phelps temperature coefficient,' J. Water Pollut. Control Fed., 46(7), 1993-1999(1974)
  18. Lin, C. Y., 'Effects of substrate loading rate and temperature on methanogenesis process in anaerobic digestion,' Doctor Degree Dissertation, Tohoku University, Japan(1986)
  19. Stensel, H. D. and Loehr, R. C., 'Biological kinetics of suspended growth denitrification,' J. Water Pollut. Control Fed., 45, 249(1973)