소화슬러지를 이용한 토양 내 석유계 탄화수소의 혐기성 분해

Anaerobic Degradation of Petroleum Hydrocarbons in Soil by Application of a Digestion Sludge

  • 이태호 (부산대학교 환경공학과) ;
  • 변임규 (부산대학교 환경기술산업개발연구소) ;
  • 박정진 (부산대학교 환경공학과) ;
  • 박현철 (부산대학교 환경공학과) ;
  • 박태주 (부산대학교 환경공학과)
  • Lee, Tae-Ho (Department of Environmental Engineering, Pusan National University) ;
  • Byun, Im-Gyu (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Park, Jeung-Jin (Department of Environmental Engineering, Pusan National University) ;
  • Park, Hyun-Chul (Department of Environmental Engineering, Pusan National University) ;
  • Park, Tae-Joo (Department of Environmental Engineering, Pusan National University)
  • 발행 : 2007.08.31

초록

혐기성 소화조 슬러지 주입에 의한 디젤오염(10,000 mg/kg soil) 토양 내 석유계 탄화수소의 혐기성 분해에 관하여 조사하였다. 오염된 토양 50 g에 총휘발성 고형물 농도 2,000 mg/L인 소화조 슬러지를 15 mL/kg soil와 30 mL/kg soil 농도로 주입하고 90일간 배양한 결과, 각각 37.2%와 58.0%의 총석유계 탄화수소(TPH)의 분해율을 나타내었다. 슬러지를 주입하지 않은 오염토양 대조군과 멸균된 토양에 멸균된 슬러지를 주입한 대조군에서는 120일간의 배양에서 초기 첨가한 디젤의 17%와 4%가 각각 제거된 것에 비하여, 전자수용체의 종류를 달리한 여러 혐기성 조건, 즉, 질산염 환원 조건, 황산염 환원 조건, 메탄생성 조건, 혼합 전자수용체 조건 모두에서 소화조 슬러지 주입에 의해 토양 내 디젤의 40% 이상이 분해됨을 확인할 수 있었다. 배양 120일 동안의 오염토양 내 TPH의 분해율은 혼합 전자수용체 조건에서 75%로 가장 높았으며, 황산염 환원 조건(67%), 질산염 환원 조건(13%), 메탄생성 조건(43%) 순으로 나타났다. 그러나 난분해성 물질로 알려진 isoprenoid의 분해율은 황산염 환원 조건이 다른 전자수용체 조건에 비해 가장 높은 분해율을 나타내었다. 본 연구 결과를 통하여, 소화조 슬러지를 이용하여 혐기성 상태에서 오염토양 내 디젤을 분해하는 기술은 석유계 탄화수소로 오염된 토양의 실질적인 복원에 유용한 것으로 판단되었다.

Anaerobic degradation of petroleum hydrocarbons in a soil artificially contaminated with 10,000 mg/kg soil of diesel fuel was tested by adding an anaerobic sludge taken from a sludge digestion tank. Treatments of soil(50 g) with 15 mL/kg soil and 30 mL/kg soil of the digestion sludge(2,000 mg/L of vss(volatile suspended solids)) showed 37.2% and 58.0% of total petroleum hydrocarbons(TPH) removal during 90 days incubation, respectively. In evaluation of several anaerobic conditions including nitrate reducing, sulfate reducing, methanogenic, and mixed electron accepters condition, treatments with the digested sludge showed significant degradation of diesel fuel under all anaerobic conditions compare to a control treatment of soil without the sludge and a treatment of autoclaved soil treatment with autoclaved digestion sludge. The rate of diesel fuel degradation was the highest in the treatment with the sludge and mixed electron accepters (75% removal of TPH) for 120 days incubation followed in order by sulfate reducing, nitrate reducing, methanogenic condition as 67%, 53%, 43%, respectively. However, the removal rate of non-biodegradable isoprenoid was the highest in the sulfate reducing condition. These results suggest that anaerobic degradation of diesel fuel in soil with digested sludge is effective for practical remediation of soil contaminated with petroleum hydrocarbons.

키워드

참고문헌

  1. Kuhn, E. P., Zeyer, J., Eicher, P., and Schwarzenbach, R.P., Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer column, Appl. Environ. Microbiol., 54, 490-496(1988)
  2. Hutchius, S., Sewell, G. W., Kovacs, D. A., and Smith, G. B., Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions, Environ. Sci. Technol., 25, 68-76(1991) https://doi.org/10.1021/es00013a005
  3. Coates, J. D., Robert T. Anderson, Joan C. Woodward, Elizaabeth J. P. Phillips, and Derek R. Lovely. Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions, Environ. Sci. Technol., 30, 2784-2789(1996) https://doi.org/10.1021/es9600441
  4. Coates, J. D., Joan Woodward, Jon Allen, Paul Philp and Derek R Lovley, 'Anaerobic Degradation of polycyclic aromatic hydrocarbons and alkanes in petroleumcontaminated marine harbor sediments,' Appl. Environ. Microbiol., 63, 3589-3593(1997)
  5. Lovely, D. R and Lonergan, D. K., 'Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15,' Appl. Environ. Microbiol., 56, 1858-1864(1990)
  6. Stetter, K. O., Huber, R., Blochl, E., and Kuur, M. 'Hyperthermophilic archaea are thriving in deep north sea and Alaskan oil reservoirs,' Nature, 365, 743-745(1993) https://doi.org/10.1038/365743a0
  7. AI-Awadhi, N., AI-Daher, R., Elnawawy, A., and Balba, M.T., 'Bioremediatin of oil-contarniated soil in Kuwait. I. Landfarming to remediate oil-contaminated soil,' J. Soil Contamination, 5(3), 243-260(1996) https://doi.org/10.1080/15320389609383528
  8. Spormann, A. M. and Widdel, F., 'Metabolism of alkylbenzenes, alkanes and other hydrocarbons in anaerobic bacteria,' Biodegradation, 11, 85-105(2000) https://doi.org/10.1023/A:1011122631799
  9. Zengler, K., Richnow, H. H., Rossello-Mora, R., Michaelis, W., and Widdel, F., 'Methane Formation from long-chain alkane by anaerobic microorganisms,' Nature, 401, 266-269(1999) https://doi.org/10.1038/45777
  10. Boopathy, R., 'Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions,' Bioresour. Technol., 86, 171-175(2003) https://doi.org/10.1016/S0960-8524(02)00162-1
  11. So, C. M. and Young, L. Y., 'Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes,' Appl. Environ. Microbiol., 65, 2969-2976(1999)