Investigation on Reaction Products From Oxidative Coupling Reactions of 1-Naphthol By Manganese Oxide

망간산화물에 의한 1-Naphthol의 산화-결합 반응에 따른 반응산물 연구

  • Lim, Dong-Min (Department of Environment Engineering, Seoul National University of Technology) ;
  • Lee, Doo-Hee (Eco-Material Education Center, Department of Environmental Engineering, Seoul National University of Technology) ;
  • Kang, Ki-Hoon (Technology Research Institute, Daelim Industrial Co., Ltd.) ;
  • Shin, Hyun-Snag (Department of Environment Engineering, Seoul National University of Technology)
  • 임동민 (서울산업대학교 환경공학과) ;
  • 이두희 (서울산업대학교 환경공학과 친환경소재제품인력양성센터) ;
  • 강기훈 ((주)대림산업 기술연구소) ;
  • 신현상 (서울산업대학교 환경공학과)
  • Published : 2007.09.30

Abstract

In this study, abiotic transformation of 1-naphthol(1-NP) via oxidative-coupling reaction and its reaction products were investigated in the presence of Mn oxides. The reaction products were characterized for their relative polarity using solvent extraction experiment and reverse-phase HPLC, and for structure using CCMS and LC/MS, and for absorption characteristics using UV-Vis spectrometry. The reaction products present in aqueous phase were more polar than parent naphthol and comprised of 1,4-naphthoquinon(1,4-NPQ) and oligomers such as dimers and trimers. Hydrophilic component present in water phase after solvent$(CH_2Cl_2)$ extractions was identified as naphthol polymerized products having molecular weight(m/z) ranging from 400 to 2,000, and showed similar UV-Vis. absorption characteristics to that of foil fulvic acid. Transformation of 1,4-NPQ, which is non-reactive to Mn oxide, to the polymerized products via cross-coupling reaction in the presence of 1-NP was also verified. In this experimental conditions(20.5 mg/L, 1-NP, 2.5 g/L $MnO_2$, pH 5), the transformation of 1-NP into the oligomers and polymerized products were about 83% of initial 1-NP concentrations, and more than 30% of the reaction products was estimated to be water insoluble fractions, not extracted by $H_2O$ methanol. Results from this study suggest that Mn oxide-mediated treatment of naphthol contaminated soils can achieve risk reduction through the formation of oligomers md polymer precipitation.

본 연구에서는 망간산화물 존재 하에서의 1-naphthol(1-NP)의 산화-결합반응을 통한 변환반응과 반응산물을 조사하였다. 변환 반응에 의해 생성된 반응산물을 대상으로 한 용매 추출과 HPLC, GC/MS, LC/MS 및 UV-Vis. 흡광특성 분석 등을 통해 반응산물의 분자 구조특성을 규명하였다. 반응 상등액에서 검출된 반응산물은 모두 1-NP에 비하여 높은 극성을 보였다. 주요 반응산물로는 1,4-naphthoquinon(1,4-NPQ)와 dimer, trimer 등의 소 중합체(oligomers)를 포함하며 특히, 용매추출$(CH_2Cl_2)$ 후 수용액에 잔류하는 친수성 형태의 반응산물은 다양한 분자량의(m/z=$400\sim2000$) 중합체로서 토양 휴믹물질(풀빅산)과 유사한 형태의 UV-Vis 흡광특성을 보였다. 또한, 비 반응성 생성물인 1,4-NPQ는 1-NP 존재 하에서 망간산화물에 의한 교차-결합(cross-coupling)을 통해 중합체로 변환될 수 있음을 확인하였다. 본 실험조건(20.5 mg/L, 1-NP, 2.5 g/L $MnO_2$, pH 5)에서 산화-결합 반응에 의한 중합체 형성으로 제거되는 1-NP의 양(mg/L)은 초기농도 대비 약 83%에 해당하며, 이들 중 약 30% 정도는 침전층에서 중류수와 메탄올$(CH_3OH)$에 의해 추출되지 않는 안정화된 형태의 불용성 중합체 생성물로 존재하였다. 이상의 결과는 망간산화물에 의한 산화-결합반응이 naphthol 오염토양의 처리에 있어서 소 중합체와 중합체 침전물로의 변환을 통한 오염 저감 및 제거 효과를 나타냄을 제시한다.

Keywords

References

  1. Bollag, J. M., Myers, C., Pal, S., and Huang, P. M., 'The role of abiotic and biotic catalysts in the transformation of phenol compounds,' In Envirnmental Impact of Soil Components Interactions: Natural and Anthropogenic Organics (P. M. Haung, J. Berthelin, J. M. Boallg, W. B. McGill, A. L. Pake eds.), CRC Press, Boca Raton, FL, pp. 299-310(1995)
  2. Naidja, A., Huang, P. M., and Bollang, J.-M., 'Comparison of reation products from the transformation of catechol catalyzed by birnessite or Tyrosinase,' Soil Sci. Soc. Am. J., 62, 188-195(1998) https://doi.org/10.2136/sssaj1998.03615995006200010025x
  3. Bollag, J. M., 'Decontaminating soil with enzymes: An in situ method using phenolic and anilinic compounds,' Environ. Sci. Technol., 26, 1876-1881(1992) https://doi.org/10.1021/es00034a002
  4. Shindo, H. and Huang, P. M., 'Role of Mn(IV) oxide in abiotic formation of humic substances in the environment,' Nature(London), 298, 363-365(1982) https://doi.org/10.1038/298363a0
  5. Shindo, H. and Huang, P. M., 'Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural Environment,' Nature(London), 308, 57-58(1984) https://doi.org/10.1038/308057a0
  6. Karthikeyan, K. G., Chorover, J., Boritiatynski, J. M., Hatcher, P. G., 'Interaction of l-naphthol and its oxidation products with aluminum hydroxide,' Environ. Sci. Technol., 33, 4009-4015(1999) https://doi.org/10.1021/es990274q
  7. Thurston, C. F., 'The Structure and Function of Fungal Laccases,' Microbiology, 140, 19-26(1994) https://doi.org/10.1099/13500872-140-1-19
  8. Reinhammer, B. and Malmstrom, B. G., 'Blue' coppercontaining oxidases,' In Copper proteins (Metal ions in Biology, Vol. 3), Spiro, T. G. Ed., John Wiley & Sons, New York, pp. 109-149(1981)
  9. Dec, J., Shuttleworth, K. L., and Bollag, J.-M., 'Microbial release of 2,4-dichlorophenol bound to humic acid or incorporated during humification,' J. Environ. Qual., 19(3), 546-551(1990) https://doi.org/10.2134/jeq1990.00472425001900030032x
  10. Kang, K.-H., Shin, H. S., and Park, H., 'Characterization of humic substances present in landfill leachates with different landfill ages and its implications,' Water Res., 36(16), 4027-4036(2002a)
  11. Minard, R.-D., Liu, S.-Y., Bollag, J. M., 'Oligomers and quinones from 2,4-dichlorophenol,' J. Agric. Food Chem., 29, 250-253(1981) https://doi.org/10.1021/jf00104a010
  12. Seling, H., Michael Keinath, T., and Weber, W. J., 'Sorption and manganese-induced oxidative coupling of hydroxylate aromatic compounds by natural geosorbents,' Environ. Sci. Technol., 37, 4122-4127(2003) https://doi.org/10.1021/es020999l
  13. Parikh, S. J., chorover, J., and Burgos, W. D., 'Interaction of phenanthrene and its primary metabolite(1-hydroxy-2-naphthoic acid) with estuarine sediments and humic fractions,' J. Contam. Hydrol., 72, 1-22(2004) https://doi.org/10.1016/j.jconhyd.2003.10.004
  14. 임동민, 강기훈, 신현상, '망간산화물을 이용한 1-Naphthol의 산화 제거 연구,' 대한환경공학회지, 28(5), 535-542(2006)
  15. Salloum, M. J., Dudas, M. J., McGill, W. B., 'Variation of l-naphthol sorption with organic matter fractionation: the role of physical conformation,' Orgnic Geochem., 32, 709-719(2001) https://doi.org/10.1016/S0146-6380(01)00007-9
  16. McKenzie, R. M., 'The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese,' Miner. Mag., 38, 493-502(1971) https://doi.org/10.1180/minmag.1971.038.296.12
  17. Hansch, C., Leo, A., Hoekman, D., 'Exploring QSA-RHydrophobic, Electronic, and Steric Constants,' American Chemical Society, Washington, DC(1995)
  18. Burgos, W. D., Berry, D. F., Bhandari, A., and Novak, J. K., 'Reversible sorption and irreversible binding of naphthalene and a-naphthol to soil: Elucidation of processes,' Enriron. Sci. Technol., 30(4), 1205-1211(1996)
  19. Huang, Q. and Weber, W. J., 'Peroxidase-catalyzed coupling of phenol in the presence of model inorganic and organic solid phases,' Environ. Sci. Technol., 38, 5238-5245(2004) https://doi.org/10.1021/es049826h
  20. Majcher, E. H., Chorover, J., Bollag, J.-M., and Huang, P. M., 'Evolution of $CO_2$ during birnessite-induced oxidation of $^{14}C$_labeled catechol,' Soil Sci. Soc. Am. J, 64, 157-163(2000) https://doi.org/10.2136/sssaj2000.641157x
  21. Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 'Transformation of the fungicide cyprodinil by a laccase of Trametes villosa in the presence of phenolic mediators and humic acid,' Water Res., 36(19), 200-208(2002b)
  22. Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., 'Effect of phenolic mediators and humic acid on cyprodinil transformation in the presence of birnessite,' Water Res., 38(11), 2737-2745(2004) https://doi.org/10.1016/j.watres.2004.03.018
  23. Xu, F., Koch, D. E., Kong, I. C., Hunter, R. P., and bhandari, A., ''Peroxidase-mediated oxidative coupling of I-naphthol: Characterization of polymerization products,' Water Res., 39, 2358-2368(2005) https://doi.org/10.1016/j.watres.2005.04.010
  24. Wang, M. C. and Huang, P. M., 'Significance of Mn(IV) oxide in the abiotic ring cleavage of pyrogallol in natural environments,' Sci. Total Environ., 113, 147-157(1992a) https://doi.org/10.1016/0048-9697(92)90022-K
  25. Ukrainczyk, L. and McBride, M. B., 'Oxidation of phenol in acidic aqueous suspensions of manganese oxides,' Clays and Clay Minerals, 40, 157-166(1992) https://doi.org/10.1346/CCMN.1992.0400204
  26. Sparks D. L., Environmental Soil Chemistry, Academic Press Inc., California, USA, pp. 99-139(1995)
  27. Shindo, H. and Huang, P. M., 'Catalytic effect of manganese(IV), iron(III), AI, and Si oxides on the formation of phenolic polymers,' Soil Sci. Soc. Am. J., 48, 927-934(1984) https://doi.org/10.2136/sssaj1984.03615995004800040045x
  28. Karthikeyan, K. G. and Chorover, J., 'Effects of solution chemistry on the oxidative transformation of l-naphtol and its complexation with humic acid,' Environ. Sci. Technol., 34, 2939-2946(2000) https://doi.org/10.1021/es991445u
  29. Silvertein, R. M. and Webster, F. X., Spectrometric Identification of Organic Compounds, 6th Ed., Jhon Wiley & Sons(1997)
  30. Kang, K.-H., Lim, D.-M., and Shin, H.-.S., 'Removal of TNT reduction products via oxidative-coupling reaction using manganese oxide,' Water Res., 27(5), 476-485(2005)
  31. Stevenson, F. J., Humus Chemistry, john Wiley and Suns Inc., New York, pp. 303-324(1994),
  32. Dec, J. and Bollag, J.-M., 'Phenoloxidase-mediated interactions of phenols and anilines with humic materials,' J. Environ. Qual., 29, 665-676(2000) https://doi.org/10.2134/jeq2000.00472425002900030001x