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Abstract This study investigated the effects of cell cultured Acanthopanax senticosus extract (ASE) supplementation and
swimming exercise on lipid profiles and carnitine concentrations in C57BL/6J mice fed high fat diets. Male C57BL/6J mice
(n=50), aged 4 weeks, were divided into 5 groups based on exercise and/or ASE supplementation (0.5 g/kg of body weight):
normal diet (N-C), high fat diet (H-C), high fat diet non-supplement & exercise (H-NSE), high fat diet supplement & no
exercise (H-SNE), high fat diet supplement & exercis (H-SE). Liver nonesterified carnitine (NEC) was significantly higher in
the H-SNE group than in the H-C group, and liver total camnitine (TCNE) levels were significantly higher in the H-SNE group
than in the H-NSE and H-SE groups. Liver and muscle carnitine palmitoyltransferase-I (CPT-I) mRNA levels tended to be
higher with ASE supplementation and/or exercise. These results suggest that supplementation with ASE and/or exercise might

have a role in improving lipid oxidation.
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Introduction

Obesity is a serious public health threat, thus there have
been intensified efforts to control weight and such efforts
are especially widespread in developed countries (1, 2).
The degree of obesity is dependent on the amount of body
fat and is regarded as a complex syndrome associated with
various factors including genetic influences, nutrition, and
environmental and social conditions (3). Complications
associated with obesity are responsible for most obesity
related morbidity and mortality. Obesity increases circulating
cholesterol and triglyceride levels, which in tun increase
the risk of developing hypertension, cardiovascular diseases,
and stroke (4). Furthermore, increased triglycerides induce
peripheral tissue insulin resistance, which is deemed one
of the risk factors for age-related diseases such as Type 2
diabetes (5). Given the health consequences of obesity, there
have been numerous studies of weight loss and management.
Some studies have focused on the prevention of obesity in
people with inactive lifestyles and the relationship between
exercise and lipid concentrations in blood (6). Exercise-
based treatments for the overweight and obese aim to
lower body fat by improving metabolic rates and utilizing
fatty acids from adipose tissue as a source of energy (7).
Acanthopanax  senticosus (AS) is a member of the
Acanthopanax family of plants classified as Araliaceae.
When the perennially deciduous shrub is dried, and
compared to other Acanthopanax species AS has such a
high density of thorns that it has the appearance of hair
covering the entire plant (8). AS is a high altitude plant
that originated in the Korean peninsular region and spread
to Siberia and China. Thorny Acanthopanax is known to
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have acanthosides E, D, chiisanoside, eleutherosides A, B,
C, D, E, I, K, M, saponins, and sesamin (9), making it a
popular ingredient in Chinese medicine. It has strong
medicinal properties, similar to ginseng, because of its
eleutheroside B and E contents, which are physiologically
active and make up about 80% of its bioactive components
(10). The level of physiological activity is usually quoted
in product information for goods containing this herb (11).
It is also known that acanthoside D and chisanoside
enhance endurance capacity (12).

Earlier studies of AS centered around its efficacy for
modulating the immune system, hypertension, antivirus,
anti-cancer, anti-stress, and exercise capacity (13). In
animal-based studies, its efficacy for excitation/relaxation,
increase in sleeping hours, antioxidant activity and lipid
improvement were also tested (8,9, 14). Lately, most
research involving this herb is regarding disease or
exercise performance. Studies that examined effects on
exercise performance, immune function, antioxidation, and
lipid improvement of ginseng or red ginseng are well
known (15, 16). These previous studies addressed much
about herbal medicine extracts and exercise performance,
but studies that closely examine lipid and blood sugar
adjustments with the combination of herbal medicine
extracts and aerobic exercise are limited.

AS is known to improve aerobic exercise performance
ability, therefore combining AS and exercise may have a
synergistic effect. However, wild AS is expensive, and the
cultivated plants require many years to develop sufficient
concentrations of the active components. As a result there
have been many attempts to develop methods for cultivating
fully developed plants more quickly (17, 18). One potential
method for developing large amounts of active herb is to
culture isolated cells in bioreactors rather than growing
plants from seeds. If successful, this technique could make
possible the production of functional botanicals in days
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rather than years (19). For this study, cell cultured AS was
grown by a novel, proprietary method, involving the
culture of isolated cells in a bioreactor. However, few
studies have investigated the efficacy of cell cultured AS.
This study investigates the effect of the cell cultured ASE
supplementation and exercise on lipid and carnitine
profiles in C57BL/6J mice fed high fat diets.

Materials and Methods

Materials Cell cultured AS with a torpedo shape was
supplied by Microplants Co., Ltd. (Microplants Co.,
Dagcjeon, Korea). The cell cultured AS cells were dried,
ground to a fine powder, and extracted with deionized
water (30 times volume) for 9 hr at 80°C. The resulting
extracts were filtered, concentrated under vacuum at 60°C,
and stored at 4 until used.

Animals and diets Male C57BL/6J mice, aged 4 weeks,
were purchased from Charles River Laboratories (Charles
River Laboratories, Tokyo, Japan). The animals were
maintained on a pellet diet (Research Diets, New Brunswick,
NJ, USA) for 1 week, and then randomly divided into 5
groups: normal diet (N-C), high fat diet (H-C), high fat
diet non-supplement & exercise (H-NSE), high fat diet

Table 1. Composition of experimental diets
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with supplement & no exercise (H-SNE), high fat diet
supplement & exercise (H-SE). The compositions of the
experimental diets are shown in Table 1. The animals were
randomly assigned to each group (n=10) such that the
average weight in each group was comparable. The H-
SNE and H-SE groups were orally administered cell
cultured ASE (0.5 g/kg BW) suspended in distilled water
once a day for 12 weeks; distilled water only was
administered to the N-C, H-C, and H-NSE groups.
Research Diets manufactured the experimental diets. The
animals were housed in a temperature-controlled
environment with a 12-hr light/dark cycle. Food
consumption and body weight were measured daily and
weekly, respectively. The experimental protocol was
approved by the Animal and Use Committee of Chonbuk
National University.

Exercise protocol Trained mice were exercised by
swimming in a pool (20) under the same conditions (34°C,
6/week, 1 hr/day) without a current for 12 weeks.

Collection of serum and tissue samples Feed was
removed 12 hr before sacrificing. Blood samples were
collected from each mouse by orbital/cardiac puncture and
incubated on ice water for 1 hr. Serum was separated from

High fat diet®
. Normal diet" Non-supplement Supplement”
Ingredient - - - -
No exercise Exercise No exercise Exercise

N-C H-C H-NSE H-SNE H-SE
Casein 200 200 200 200 200
L-Cystine 3 3 3 3 3
Corn starch 315 - - - -
Maltodextrin 35 125 125 125 125
Sucrose 350 68.8 68.8 68.8 68.8
Cellulose 50 50 50 50 50
Soybean Oil 25 25 25 25 25
Lard 20 245 245 245 245
Mineral mix 10 10 10 10 10
Dicalcium phosphate 13 13 13 13 13
Calcium carbonate 5.5 5.5 5.5 5.5 5.5
Potassium citrate 16.5 16.5 16.5 16.5 16.5
Vitamin mix 10 10 10 10 10
Choline bitarate 2 2 2 2 2
FD&C Yellow dye #5 0.05 - - - -
FD&C Blue dye #1 - 0.05 0.05 0.05 0.05
Total 1,055.05 773.85 773.85 773.85 773.85
keal 4,057 4,057 4,057 4,057 4,057
Protein (kcal%) 20 20 20 20 20
Carbohydrate (kcal%) 70 20 20 20 20
Fat (kcal%) 10 60 60 60 60
keal/g 3.8 52 52 52 52

DAIN-93 Modified diet with 4% fat (10% fat calories) content.

Y AIN-93 Modified high fat diet with 35% fat (60% fat calories) content.

JHigh fat diet+SNE, SE groups, Acanthopanax senticosus extract (0.5 g/kg BW) was administered as described in Material and Methods.
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blood by centrifugation at 1,100xg for 15 min at 4°C and
kept at -80°C until analyzed. The epididymal fat, liver,
kidney, heart, brain, and muscle were removed, rinsed with
a phosphate-buffered saline solution, wiped with a paper
towel, weighed quickly, frozen in liquid nitrogen, and
stored at -80°C until assayed.

Analysis of lipids and leptin Total cholesterol in the
serum was measured enzymatically using a commercial kit
(Asan Pharmaceutical Co., Seoul, Korea), and the high
density lipoprotein-cholesterol (HDL-c) fraction was
determined by the dextran sulfate-Mg™ method. Liver
lipids were extracted from liver tissues according to the
method of Folch er al. (21). Triglycerides in serum and liver
tissue were measured enzymatically with a commercial kit
(Assn Phamaceutical Co.), and total lipids in serum and
liver tissue were measured by the sulfo-phospho-vanillin
method using a commercial kit (Kokusai Phamaceutical
Co., Kobe, Japan).

Serum leptin levels were determined by radioimmuno-
assay (RIA) using a mouse leptin RIA kit from Linco
Reasearch (St. Charles, MO, USA). Radioactivity was
measured in a gamma scintillation counter.

Analysis of carnitine Muscle tissues (50 mg) were
homogenized (20 sec) using a sonicator (Fisher Scientific
Co., Toronto, ONT, USA) with 99 volumes of cold distilled
water. Liver tissues were homogenized by adding 50 mg to
29 volumes of cold distilled water, centrifuging at 1,500xg
and collecting the supernatant. Non-collagen protein in
gastric tissue extracts was extracted by adding 1 to 9
volumes of 50 mmol/L. KOH for 12-16 hr, centrifuging at
1,500xg, and then quantitatively analyzing the supernatant
with a protein assay kit (Bio-Rad Lab., Hercules, CA,
USA) based on the method of Bradford (22).
Nonesterified carnitine (NEC), acid-soluble acylcarnitine
(ASAC), and acid-insoluble acylcarnitine (AIAC) in
serum were determined by the radioimmunoenzymatic
procedure of Cederbad and Lindstedt (23) as modified by
Sachan et al. (24). In this method, ATAC was precipitated
with perchloric acid and centrifuged, leaving the ASAC
and NEC in the supernatant. An aliquot of the supernatant
was assayed to determine the amount of NEC, and another
aliquot was hydrolyzed with 0.5 mol/LL KOH to assay all

Table 2. Weight gain and feed efficiency ratio?
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acid-soluble carnitine (ASAC+NEC). The ASAC value
was calculated as the difference between the NEC and
total acid-soluble carnitine. The pellets containing AIAC
were drained, washed, and hydrolyzed in 0.5 mol/ KOH
for 60 min in a hot water bath 60°C. In each case, carnitine
was assayed using carnitine acetyltransferase (Sigma
Chemical Co., St. Louis, MO, USA) to esterify the carnitine
with ["Clacetate from [1-'*Clacetyl-CoA (Amersham,
Arlington Heights, 1L, USA). Radioactivity was measured
in a Beckman model 1.S3801 liquid scintillation counter
{Beckman Instruments, Palo Alto, CA, USA).

CPT-I mRNA levels of liver and muscle Total RNA
was extracted with Trizol reagent (Ambion, Austin, TX,
USA) and the concentration measured spectrophotome-
trically. Reverse transcription polymerase chain reaction
(RT-PCR) was used for cDNA synthesis using a one-step
RT-PCR kit (ABgene, New York, NY, USA). B-Actin was
used as a control. The RT-PCR reaction was carried out
using an RT-PCR kit (MWG-Biotech, High Point, NC,
USA). At the end of the RT-PCR reaction, the results were
confirmed by verifying the cDNA product by electrophoresis
on a 1.5% agarose gel.

Statistical analysis Data from individual experiments are
expressed as the mean + standard deviation. All statistical
analyses were performed using SAS software (SAS
Institute, Cary, NC, USA). The data were analyzed by 2-
way analysis of variance (ANOVA) (ASE supplementation
x swimming exercise). When significant differences were
indicated, mean values were compared by Tukey’s test.
Statistical significance is defined as p<0.05.

Results and Discussion

Weight gain and feed efficiency The H-C group gained
more weight and at a faster rate than the H-NSE, H-SNE,
and H-SE groups (Table 2). The feed efficiency ratio was
significantly higher in the H-C group compared to the H-
NSE, H-SNE, and H-SE groups (Table 2). The feed
efficiency ratios were significantly decreased in the ASE
supplementation or exercise groups compared to the H-C
group. This finding supports the hypothesis that cell cultured
ASE supplementation leads to weight loss in mice fed a high

ND HD . .
Group NOT1-supplement . Supplement . Si;?gigﬁiz)

N-C No exercise Exercise No exercise Exercise

H-C H-NSE H-SNE H-SE S E SE

Initial weight (g) 22.03+0.90 22.68+0.58 22.65+0.91 22.77+1.00 12.33+1.10 NS NS NS
Weight gain (g/day) 5.82+0.06° 16.69+4 27% 13.21£2.01° 12.49+3.45° 12.33£1.36° 001 001 NS
Food intake (g/day) 2.33+0.06 2.37+0.17 2.35+0.09 2.31+0.07 2.33+0.08 NS NS NS
Energy intake (kcal/day)  8.88+0.24 12.31+0.89 12.25+0.72 11.99+0.37 11.89+0.6 NS NS NS
Feed efficiency ratio 0.067£0.006°  0.086£0.002°  0.061£0.002° 0.065£0.001®  00.60+0.003* 0.023 0.02 NS

DMean+SD of 10 mice per group. Values with different superscript letters within the same row are significantly different at p<0.05 by ANOVA

and Duncan’s multiple range tests. N-C, normal diet; H-C, high
supplement & no exercise; H-SE, high fat diet, supplement & exercise.

at diet; H-NSE, high fat diet, non-supplement & exercise; H-SNE, high fat diet,

DThe degrees of significance resulting from 2-way ANOVA are shown with the effects of supplementation (S), exercise (E), and the interaction of
supplementation and exercise (SxE) being expressed as the numerical value or as not significant (NS) when p<0.05.
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fat diet (19). Chung et al. (25) found that exercise prevents
diet-induced weight gain and lowers the feed efficiency ratio
in all mice fed diets high in fat compared with non-exercised
mice. The authors suggested that physical exercise
boosts fat breakdown by increasing energy expenditure
while suppressing hyperplasia synthesis of fatty cells.

Epididymal fat pad weight Epididymal fat pad weights
were significantly lower in the H-NSE, H-SNE, and H-SE
groups than in the H-C group, and the H-NSE, H-SE
groups were lower than the H-SNE group demonstrating
that exercise decreases epididymal fat pad weights (Fig.
1). Regular exercise helps reduce body fat by increasing
energy consumption and suppressing insulin resistance and

Epididymal fat pad
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Fig. 1. Epididymal fat pad weight. N-C, normal diet; H-C, high
fat diet; H-NSE, high fat diet non-supplement & exercise; H-SNE,
high fat diet supplement & no exercise, H-SE, high fat diet
supplement & exercise; Ex, exercise. Mean+SD of 10 mice per
group. Bars with different superscript letters are significantly
different at p<0.05 by ANOVA and Duncan’s multiple range tests.

Table 3. Lipid concentrations in mice”
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the formation of adipose cells in obese Zucker rats (26). It
is commonly known that low intensity exercise (40% VO,
max) is more efficient for losing body fat because the body
uses lipid stores for energy during submaximal exercise.
Low intensity exercise increases total fat oxidation, and in
animal experiments, cardio exercise down-regulates FAS
activity which decreases lipid synthesis and accumulation
thereby reducing body fat (27). In this study, epididymal
fat pad weights were also significantly decreased with
exercise or ASE supplementation combined with exercise,
which was more effective than ASE supplementation only.
Therefore, we can assume that ASE decreases epididymal
fat pad weights when combined with the beneficial effects
of exercise.

Serum and liver lipid levels The effects of ASE
supplementation and exercise on lipid profiles in serum
and liver are shown in Table 3. Serum triglyceride (TG)
concentrations were significantly lower in the H-SE group
compared to the H-C group. Serum TG levels were
significantly lower with ASE supplementation combined
with exercise, which was most effective. Thus we consider
there to be a synergistic or additive effect when ASE
supplementation is combined with exercise. Liver TG levels
were significantly lower in the H-NSE, H-SNE, and H-SE
groups than in the H-C group. The hepatic TG
concentrations were significantly lower with exercise
training and ASE supplementation. The level of dietary fat
has an impact on the amount of body fat, serum
cholesterol levels, and formation of fatty acids (28).
However, cell cultured ASE supplementation significantly
reduced serum and liver TG concentrations in mice fed the
high fat diet, as was previously demonstrated (19). Nishibe
et al. (29) also reported a decrease in body lipid levels in
rats injected with water extracts of ASE when exercised in
a pool. TC concentrations in serum were significantly
higher in the H-C group than in the H-SNE and H-SE
groups. Similar results were obtained in another AS study.
Cha et al. (30) reported that total cholesterol levels were
decreased by ASE supplementation, with decreased LDL

ND HD
Group Non-supplement Supplement Statistical significance®
N-C No exercise Exercise No exercise Exercise
H-C H-NSE H-SNE H-SE S E SE
Serum (mg/dL)
TG 67.02£16.28%  95.06+25.84*  73.46+15.10% 70.06+5.65%  48.97+19.61°  0.029 NS NS
TC 159.09420.66° 203.35£33.72° 175.09+14.78% 155.02+19.36° 154.35+19.55°  0.002 NS NS
HDL-c 23.7242.64 40.59+24.19  50.49+17.95  30.45:1579  35.64+£8.74 NS NS NS
HDL-¢/TC 0.12+0.02°¢ 0.23+0.01° 0.31£0.03? 0.19+0.03° 0.23+3.68°  0.0002  <0.0001 NS
Liver (mg/g)
TG 80.08+34.94° 377.01£75.082% 197.31£38.46° 191.19+32.89® 162.54£17.27° 0.0002  0.0002  0.0008
TC 8.10+3.23 24.8245.51 23.45+6.58 23.13+3.68 20.18+2.19 NS NS NS

YMean+SD of 10 mice per group. Values with different superscript letters within the same row are significantly different at p<0.05 by ANOVA
p fP !

and Duncan’s multiple range tests. N-C, normal diet; H-C, high

] at diet; H-NSE, hi%h fat diet, non-supplement & exercise; H-SNE, high fat diet,
supplement & no exercise; H-SE, high fat diet, supplement & exercise; TC, total cho

esterol; TG, triglyceride; HDL-c, HDL-cholesterol.

JThe degrees of significance resulting from 2-way ANOVA are shown with the effects of supplementation (S), exercise (E), and the interaction of
supplementation and exercise (SXE) being expressed as the numerical value or as not significant (NS) when p<0.05.
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cholesterol levels in C57BL/6J mice. In this study,
exercise without ASE supplementation did not improve
lipid profiles more than ASE supplementation. Kim et al.
(31) found that exercise could not significantly improve
TG and HDL-c levels. They reported that short term
cardio exercise did not change blood lipid profiles,
therefore changes in blood lipid profiles are affected by
differences in duration, intensity, and frequency of exercise
among experiments. Thus, we can assume that ASE
extract can improve lipid profiles when combined with the
beneficial effects of exercise. There were no significant
differences in serum HDL-c concentrations among the no
exercise groups or exercise groups with ASE
supplementation. However, the HDL-c¢/TC ratios were
significantly higher in the H-NSE group than in the H-C,
H-SNE, and H-SE groups.

Although the serum HDL-c levels did not change much,
the HDL-¢/TC ratio was significantly higher in the non-
supplemented exercise group. Combination measures such
as the HDL-¢/TC index have been shown to have a
stronger association with coronary heart disease than
individual cholesterol components (32). To control serum
cholesterol levels, regular aerobic exercise is needed
because exercise reduces body fat and serum cholesterol
levels, and the risk of developing coronary artery disease
is reduced as a result (33).

Serum, liver, and muscle carnitine levels Carnitine (3-
hydroxy-4-N-trimethyl-ammonium  butyrate) transports

Table 4. Carnitine concentrations”
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fatty acids into the mitochondria where fatty acids undergo
B-oxidation, playing a vital role in activating the oxidation
of fatty acids in tissues (34). This means that a lack of
carnitine will slow the oxidation of fatty acids and fuel an
increase in serum lipid levels. Serum NEC, ASAC, AIAC,
and TCNE levels were not significantly different among
the exercise and ASE supplemented groups. However, the
acyl/free carnitine levels were significantly higher in the
H-NSE, H-SNE, and H-SE groups than in the H-C group.
These findings are likely due to the fact that mice fed high
fat diets had higher levels of NEC, on the other hand,
ASAC and AIAC concentrations in plasma were lower in
high fat diet groups compared to the normal diet group.
The higher serum acyl/free carnitine ratios in the ASE
supplemented and exercised groups is likely attributable to
the transportation of acyl-carnitine from muscle to the
bloodstream during exercise (35). Further investigation of
the mechanism of how ASE supplementation and exercise
affect carnitine levels is needed.

The liver ASAC, AIAC, and acyl/free carnitine ratio
levels were not significantly different among exercised and
ASE supplemented groups. However, the TCNE levels
were significantly higher in the H-SNE group than in the
H-NSE and H-SE groups. NEC levels were significantly
higher in the H-SNE group than in the H-C group. NEC
levels in muscle were significantly higher in the ASE
supplemented groups than in the H-C group (Table 4). In
this study, NEC and TCNE concentrations were elevated
in the liver after ASE supplementation, which was likely

ND HD
Group Non-supplement Supplement Statistical significance?
N-C No exercise Exercise No exercise Exercise
H-C H-NSE H-SNE H-SE S E SE
Serum (pmol/dL)
NEC 1.18+0.19 1.98+0.49 2.07+0.24 1.92+0.34 2.12+0.19 NS NS NS
ASAC 2.15+0.28 1.15+0.31 1.63+0.32 1.78+0.30 1.66+0.40 NS NS NS
ATAC 0.21+0.03 0.12+£0.05 0.1120.05 0.11£0.04 0.110.01 NS NS NS
TCNE 3.72+0.52 3.79+0.36 3.18+0.43 3.82+0.56 3.89+0.50 NS NS NS
Acyl/free 1.96+0.52° 0.66+0.08° 0.94+0.08° 1.05+0.10° 0.92+0.09" NS NS 0.029
Liver (mol/g)
NEC 0.56+0.082 0.37+0.05¢ 0.41+0.04% 0.47+0.05° 0.40+0.06™  0.035 NS 0.015
ASAC 0.12+0.007 0.03+0.007 0.03:£0.009 0.03+0.007 0.02:0.008 NS NS NS
ATAC 0.19+0.02 0.05+0.02 0.05+0.02 0.10+£0.02 0.05+0.02 NS NS NS
TCNE 0.71£0.01° 0.52+0.06 ™ 0.47+0.05° 0.57£0.07° 0.48+0.05°¢ NS 0.03 NS
Acyl/free 0.84+0.54 0.20:£0.90 0.17+0.29 0.28+0.54 0.18+0.47 NS NS NS
Muscle (nmol/mg non collagen protein)
NEC 8.60+0.87° 8.92+1.60° 11.12+£2.44%  11.50£1.912 11.99+1.14 0.01 NS NS
ASAC 11.05+2.50 10.41£2.87 13.07+1.13 13.01+1.69 12.43+1.97 NS NS NS
TCNE 19.98+1.97 19.98+1.97 23.53+3.35 21.55+3.95 22.07+3.38 NS NS NS
Acyl/free 1.29+0.38 1.13+£0.34 1.51£0.21 1.22+0.18 1.41£0.11 NS NS NS

UMean=SD of 10 mice per group. Values with different superscn}t letters within the same row are significantly different at p<0.05 by ANOVA

and Duncan’s multiple range test. N-C, normal diet; H-C, high

at diet; H-NSE, high fat diet non-supplement & exercise; H-SNE, high fat diet

supplement & no exercise; H-SE, high fat diet supplement & exercise; NEC, non-esterified carnitine; ASAC, acid soluble acyl camitine; AIAC,

2)

acid insoluble acyl carnitine; TCNE, total carnitine; Acyl/free, ASAC + AIAC/TCNE. . .
The degrees of significance resulting from 2-way ANOVA are shown with the effects of supplementation (S), exercise (E), and the interaction of

supplementation and exercise (SXE) being expressed as the numerical value or as not significant (NS) when p<0.05.
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due to increased carnitine biosynthesis in the liver. ASE
supplementation also triggers an increase in fatty acid
oxidation and muscle NEC. Thus cell cultured ASE
supplementation, combined with exercise, may have reduced
body lipid levels by accelerating camnitine biosynthesis and
the oxidation of fatty acids.

Serum leptin levels Leptin is a protein hormone encoded
by the ob gene and secreted by adipose cells. Leptin was

Leptin
30
a
25 +
20
Eis ¢
g
10 +
5 L
0 g
N-C H-C H-NSE  H-SNE H-SE
No Ex Ex  NoEx Ex
I | E——
Non-supplement Supplement

Fig. 2. Leptin concentrations in serum. N-C, normal diet; H-C,
high fat diet; H-NSE, high fat diet non-supplement & exercise; H-
SNE, high fat diet supplement & no exercise; H-SE, high fat diet
supplement & exercise. Mean+SD of 10 mice per group. Bars
with different superscript letters are significantly different at p<
0.05 by ANOVA and Duncan’s multiple range tests.

Muscle

CPT-1

B-Actin

Relactive intensity (%)

N-C  H-C H-NSE H-SNE H-SE
No Fx Ex No Ex Ex
] l ]

Non-supplement Supplement
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found to exert effects on the hypothalamic area involved in
the regulation of food and water. By combining with its
receptors in the hypothalamic area, it inhibits the production
and secretion of neuropeptide Y and eventually reduces
food intake and body weight (36). Several investigators
claim that a high fat diet increases leptin production and its
level in the blood (37). Leptin reduces weight in normal
weight animals as it signals fullness and cues them to stop
eating, but its activation is blunted in high fat diet-induced
obese animals as they develop resistance to leptin (38).
Serum leptin levels were significantly higher in the no
exercise groups. The supplementation of ASE had no
effect on serum leptin concentrations in the any exercise
groups, however serum leptin concentrations were
significantly lower in both NSE and SE groups (Fig. 2).
The obesity-related increase in leptin levels can be improved
through a variety of exercises such as aerobic and resistance
exercise (39). This result suggests that swimming decreases
the level of serum leptin, which helps regulate insulin
sensitivity and the size of fatty tissues (40). In this study,
ASE supplementation did not significantly improve leptin
production, however exercise did improve leptin levels.
Therefore, we can assume that ASE extract can improve
leptin production when combined with the beneficial
effects of exercise.

Hepatic and muscle CPT-I mRNA levels Carnitine
palmitoyltransferase-I (CPT-I) is located on the outer
mitochondrial membrane and facilitates the movement of
long chain fatty acids (LCFA) into the mitochondrial
matrix. Therefore, it functions as a rate-limiting enzyme of
B-oxidation in the mitochondria by having a key role in
the transport of LCFA (41). The effects of ASE supple-
mentation and exercise on CPT-I expression in serum and

Hepatic

H-C  H-NSE H-SNE H-SE

No Ex Ex NoEx Ex

Non-supplement Supplement

Fig. 3. Hepatic and muscle CPT-I mRNA levels. N-C, normal diet; H-C, high fat diet; H-NSE, high fat diet non-supplement & exercise;
H-SNE, high fat diet supplement & no exercise; H-SE, high fat diet supplement & exercise. Mean+SD of 10 mice per group. Bars with
different superscript letters are significantly different at p<0.05 by ANOVA and Duncan’s multiple range tests.
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liver are shown in Fig. 3.

Hepatic CPT-I mRNA levels, which are associated with
fatty acid B-oxidation, were higher in the H-NSE and H-
SNE groups than the intermediate levels observed in the
H-C and H-SE groups. Earlier studies reported that hepatic
CPT-I mRNA expression is increased by exercise and high
fat diet, suggesting that the control of CPT-I mRNA
expression is a key feature in the regulation of fatty acid
oxidation. during exercise (42, 43). Another study claimed
that CPT-I enzyme activity is increased by the up-
regulation of CPT-I transcription mediated by genisetin, soy
isoflavone, and daidzein (44). The present study supports
the results of these earlier studies by demonstrating
increased hepatic CPT-I mRNA expression in the ASE
supplemented groups. Given the vital role of CPT-] in
regulating fatty acid oxidation, a large number of studies
have been carried out to explore the effects of exercise on
this enzyme and suggest an increase in CPT-I and fatty
acid oxidation after regular exercise (45). It was found in
this study, however, that hepatic CPT-I mRNA expression
is lower in the group supplemented with ASE and
exercised. This finding is similar to that of Yang er al. (46)
in 'which hepatic CPT-I mRNA expression was reduced
when the injection of growth hormone was combined with
exercise. These findings suggest that the efficacy of cell
cultured ASE is undermined by counteractive effects of
exercise, resulting in a decreased capacity for fatty acid
oxidation. CPT-I mRNA levels in muscle were higher in
the H-SNE group than in the H-C, H-NSE, and H-SE
groups. This finding can be explained by the observation
that with long-term physical training, CPT-I activity is
adequate to support fatty acid oxidation (47). In this study,
ASE influenced the formation of muscle and hepatic CPT-
I, and the reciprocal effect of ASE and exercise was not
observed. Therefore, it appears that exercise combined
with high-fat diet and ASE extract intake in a short period
of time does not influence the formation or levels of CPT-I.

Based on these results, ASE and exercise can each
reduce body fat stores, and we conclude that the
combination of ASE with exercise is even more effective
at improving lipid profiles.
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