Characteristics of Thiosulfinates and Volatile Sulfur Compounds from Blanched Garlic Reacted with Alliinase

Alliinase 첨가에 의한 열처리 마늘로부터 생성된 함황 화합물의 특성

  • Published : 2007.12.01

Abstract

In this study, attempts were made to develop a method for controlling the volatile sulfur compounds in garlic. Crude alliinase extracted from fresh garlic was applied to garlic pulp blanched far 5 min at $100^{\circ}C$, and the changes in the thiosulfinates and volatile compounds of the blanched garlic pulp reacted with the enzyme were investigated. Eight kinds of thiosulfinates from garlic were separated by HPLC, and identified by LC/MS/MS. When the alliinase was added to the blanched garlic pulp at 100, 200, 300, or 400 units, and reacted for 15 min, respectively, thiosulfinates were generated in the amounts of 37, 68, 77, and 80% of the fresh garlic content (control). Under the same conditions, we analyzed the volatile compounds, where 28 peaks were identified by GC/MSD. Of the 28 peaks, 23 were volatile sulfur compounds. The results of the analysis showed that all the volatile compounds were generated at amounts of 25, 36, 66, and 76% of the content of the control, respectively. These results indicate that the sulfur compound content of garlic can be regulated, depending upon the reaction conditions of allinase.

마늘의 주요 향기성분 및 생리활성을 나타내는 것으로 알려진 함황 화합물의 생성을 조절하기 위한 방법을 개발하고자 하였다. 이를 위하여 열처리에 의하여 마늘 중의 효소를 완전히 실활 시킨 마늘펄프에 마늘로부터 추출한 alliinase를 첨가하여 첨가량 및 반응시간에 따른 thiosulfinates 및 휘발성 향기성분의 함량 변화를 측정하였다. HPLC 및 LC/MS/MS를 이용하여 생마늘 중의 thiosulfinates를 분리, 확인한 결과 8종의 thiosulfinates를 확인하였다. Allicin은 전체 thiosulfinates함량의 약 60%를 차지하는 것으로 나타났다. 마늘로부터 추출한 alliinase를 열처리 마늘펄프에 각각 100, 200, 300 및 400 unit를 첨가하여 5, 10 및 15분씩 각각 반응시킨 결과 효소첨가량 및 반응시간의 증가와 함께 thiosulfinates 함량도 증가하였다. 100, 200, 300 및 400 unit의 alliinase를 첨가하여 15분간 반응시킨 결과 총 thiosulfinates는 생마늘(대조구)에 비하여 각각 37, 68, 77 및 80%가 생성되는 것으로 나타났다. GC/MSD를 이용하여 대조구 및 효소를 첨가하여 반응시킨 시료의 휘발성 향기성분을 분석한 결과 36개의 피크를 분리하였고, 이중 28개 피크에 대하여 확인 할 수 있었다. 확인된 28개의 피크 중 23개 피크가 함황 화합물이었다. Alliinase를 100, 200, 300 및 400 unit씩 첨가하여 15분간 반응시킨 시료에 대하여 휘발성 향기성분을 분석한 결과 대조구에 비하여 각각 25, 36, 66 및 76%가 생성되는 것으로 나타났다. 이상의 결과를 종합해 볼 때, 열처리한 마늘에 alliinase를 첨가하여 반응시키면 반응조건에 따라 마늘 중의 주요생리활성 물질 및 휘발성 향기성분인 thiosulfinates와 휘발성 함황 화합물의 생성을 30-80%까지 조절할 수 있을 것으로 사료된다.

Keywords

References

  1. Kwon SK. Organosulfur compounds from Allium sativum and physiological activities. J. Appl. Pharmacol. 11: 8-32 (2003)
  2. Tsao SM, Yin MC. In vitro activity of garlic oil and four diallyl sulphides against antibiotic-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae. J. Antimicrob. Chemoth. 47: 665-670 (2001) https://doi.org/10.1093/jac/47.5.665
  3. Chi MS, Koh ET, Stewart TJ. Effects of garlic on lipid metabolism in rats fed cholesterol or lard. J. Nutr. 112: 241-248 (1982) https://doi.org/10.1093/jn/112.2.241
  4. Chung JG. Effects of garlic components diallyl sulfide and diallyl disulfide on arylamine N-acetyltransferase activity in human bladder tumor cells. Drug Chem. Toxicol. 22: 343-358 (1999) https://doi.org/10.3109/01480549909017839
  5. Chun HJ, Lee SW. Studies on antioxidative action of garlic components isolated from garlic (Allium sativum L.). Korean Home Econo. Assoc. 24: 43-51 (1986)
  6. Fanelli SL, Castro GD, de Toranzo EG, Castro JA. Mechanisms of the preventive properties of some garlic components in the carbon tetrachloride-promoted oxidative stress. Diallyl sulfide; diallyl disulfide; allyl mercaptan and allyl sulfide. Res. Commun. Mol. Path. 102: 163-174 (1998)
  7. Jeang DY, Jeang SU. Garlic Science. World Science, Seoul, Korea. pp. 93-103 (2005)
  8. Lawson LD, Wood SG, Hughes BG. HPLC analysis of allicin and other thiosulfinates in garlic clove homogenates. Planta Med. 57: 263-270 (1991) https://doi.org/10.1055/s-2006-960087
  9. Stoll A, Seebeck E. Chemical investigation on alliin, the specific principle of garlic. Adv. Enzymol. 11: 377-400 (1951)
  10. Brodnitz MH, Pascale JV, Derslice LV. Flavor components of garlic extracts. J. Agr. Food Chem. 19: 273-275 (1971) https://doi.org/10.1021/jf60174a007
  11. Kamel A, Saleh M. Recent studies on the chemistry and biological activities of the organosulfur compounds of garlic (Allium sativum). Vol. 23, pp. 455-485. In: Studies in Natural Products Chemistry. Rahman A (ed). Elsevier, New York, NY, USA (2000)
  12. Pruthi JS, Singh LJ, Girdhari L. Thermal stability of alliinase and enzymatic regeneration of flavour in odourless garlic powder. Curr. Sci. India 28: 403-404 (1959)
  13. Mazelis M, Crews L. Purification of the alliin lyase of garlic, Allium sativum L. J. Biochem.-Tokyo 108: 725-730 (1968)
  14. Nock LP, Mazelis M. The C-S lyases of higher plants: Direct comparison of the physical properties of homogeneous alliin lyase of garlic (Allium sativum) and onion (Allium cepa). Plant Physiol. 85: 1079-1083 (1987) https://doi.org/10.1104/pp.85.4.1079
  15. Friedemann TE, Hangen, GE. Pyruvic acid II. The determination of keto acids in blood and urine. J. Biol. Chem. 147: 415-442(1943)
  16. Schwimmer S, Weston WJ. Enzymatic development of pyruvic acid in onion as a measure of pungency. J. Agr. Food Chem. 9: 301-304 (1961) https://doi.org/10.1021/jf60116a018
  17. Freeman GG, Whenham RJ. The use synthetic(${\pm}$/)-S-1-propyl-Lcystein sulphoxide and of alliinase preparation in studies of flavor changes resulting from processing of onion (Allium cepa L.). J. Sci. Food Agr. 26: 1333-1346 (1975) https://doi.org/10.1002/jsfa.2740260912
  18. Block E, Naganathan S, Putman D, Zhao SH. Allium chemistry: HPLC analysis of thiosulfinates from onion, garlic, wild garlic (Ramsons), leek, scallion, shallot, elephant (great-headed) garlic, chive, and Chinese chive. J. Agr. Food Chem. 40: 2418-2430 (1992) https://doi.org/10.1021/jf00024a017
  19. Shin DB. Effect of extraction and dehydration methods on flavor compounds of garlic powder. PhD thesis, Chung-Ang University, Seoul, Korea (1995)
  20. Yu TH, Wu CM, Liou YC. Volatile compounds from garlic. J. Food Sci. 54: 977-981 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb07926.x
  21. Bradford MM. A rapid and sensitive method for the quantification of microgram quantites of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  22. Shin DS. Effect of food components and porcessing condition on antimicrobial of garlic-alliinase reaction compounds. MS thesis, Chung-Ang University, Seoul, Korea (2001)
  23. Tomofumi M, Asako H, Mitsuyo S, Mami Y, Kazuki S. Alliinase [S-alk(en)yl-L-cystein suloxide lyase] from Allium tuberosum (Chinese chive). Eur. J. Biochem. 257: 21-30 (1998) https://doi.org/10.1046/j.1432-1327.1998.2570021.x
  24. Arnault A, Christides JP, Mandon N, Haffner T, kahane R, Auger J. High-performance ion-pair chromatography method for simultaneous analysis of alliin, deoxyalliin, allicin and dipepeptide precursors in garlic products using multiple mass spectrometry and UV detection. J. Chromatogr. A 991: 69-75 (2003) https://doi.org/10.1016/S0021-9673(03)00214-0
  25. Law LD, Hughes BG. Characterization of the formation of allicin and other thiosulfinates from garlic. Planta Med. 58: 345-350 (1992) https://doi.org/10.1055/s-2006-961482
  26. Leahy MM, Reineccius GA. Comparison of methods for the isolation of volatile compounds from aqueous model system. pp. 19-47. In: Analysis of Volatiles. Schreier P (ed). Walter de Gruyter, Berlin, Germany (1984)
  27. Spare CG, Virtanin AI. On the lachrymatory factor in onion (Allium cepa) vapors and its precursor. Acta Chem. Scand. 17: 641-650 (1963) https://doi.org/10.3891/acta.chem.scand.17-0641