Characteristics and Immunomodulating Activity of Lactic Acid Bacteria for the Potential Probiotics

Probiotics로서의 젖산균주의 특성 및 면역활성

  • Seo, Jae-Hoon (Traditional Research Team, Food R&D Center, Daesang Co.) ;
  • Lee, Ho (Department of Food Science & Biotechnology, Kyonggi University)
  • 서재훈 (대상(주) 중앙연구소 식품연구실) ;
  • 이호 (경기대학교 이과대학 식품생물공학)
  • Published : 2007.12.01

Abstract

This study was designed to examine the suitable characteristics of potential probiotic bacteria. Possible probiotic bacteria, including Lactobacillus acidophilus DDS-1, Lb. acidophilus B-3208, Bifidobacterium bifidum KCTC 3357, Lb. plantarum, Leuconostoc mesenteroides ssp. mesenteroides ATCC 8293, and Lactococcus lactis ssp. lactis ATCC 7962 were selected. We then measured their acid and bile tolerances, adhesion properties in the gastrointestinal tract, antimicrobial activity against pathogenic bacteria, and immunomodulation activity. The acid tolerances of Lb. acidophilus DDS-1, Lb. acidophilus B-3208, Lb. plantarum, and Leu. mesenteroides ssp. mesenteroides ATCC 8293, in PBS (pH 2.5) for 2 hr, were high enough that 50% of the inocula survived. The bile tolerances of all bacteria, except Lc. lactis ssp. lactis ATCC 7962, were also observed at a 3% oxgall concentration in MRS broth. The results of the adhesion property assay showed that the total binding affinities of Lb. acidophilus DDS-1, Lb. acidophilus B-3208, and B. bifidum were about three times higher than those of the other bacteria. In testing their antimicrobial activities against pathogens, Lb. acidophilus B-3208, B. bifidum KCTC 3357, and Lb. plantarum inhibited the growth of pathogenic bacteria. For their immunomodulation activity, the cell wall fractions from Lb. acidophilus DDS-1 and Lb. acidophilus B-3208 showed the highest bone marrow cell proliferation activities. However, the cell wall fractions of Lb. acidophilus DDS-1 and B. bifidum, and the cytosol fraction of Lc. lactis ssp. lactis ATCC 7962 showed higher macrophage stimulation activities than those of the other bacteria. Since Lb. acidophilus DDS-1 and Lb. acidophilus B-3208 satisfy the requirements for probiotics, they can be considered suitable probiotic bacteria.

Probiotics로서의 사용을 위한 우수 젖산균주 선발을 위해 김치 및 발효유 제품으로부터 분리한 젖산균과 공시 젖산균주를 대상으로 내산성, 내담즙성, 장내 점착능, 병원성균 억제능 등의 probiotics 특성과 장관면역활성, mitogenic activity 및 대식세포 활성화 등의 면역활성을 검토하였다. 내산성 실험의 결과, Lactobacillus acidophilus DDS-1, Lb. acidophilus B-3208, Lb. plantarum과 Leuconostoc mesenteroides ssp. mesenteroides ATCC 8293의 경우 생존률이 50% 이상으로 나타났으며, 특히 Lb. acidophilus DDS-1과 Lb. acidophilus B-3208의 경우에는 70% 정도의 높은 생존률을 나타내었다. 또한 젖산균주의 담즙산 내성에서는 Lactococcus lactis ssp. lactis ATCC 7962를 제외한 모든 균주가 3% oxgall이 함유된 MRS배지에서도 성장이 가능한 것으로 관찰되었다. 젖산균주의 장내 점착능 면에서 볼 때, Lb. acidophilus DDS-1, Lb. acidophilus B-3208과 Bifidobacterium bifidum KCTC 3357의 장내 점착능이 실험에 사용된 다른 젖산균주와 비교하여 우수하다고 관찰되었으며, 특히 Lb. acidophilus DDS-1과 B-3208의 장내점착능이 높게 나타났다. 젖산균주의 병원성균 억제능 실험의 결과, Lb. acidophilus DDS-1, Lb. acidophilus B-3208 및 B. bifidum KCTC 3357은 Staphylococcus aureus를 제외한 Escherichia coli O157:H7 ATCC 43895, Listeria monocytogenes ATCC 59414, 그리고 Salmonella enteritidis ATCC 49313에 대해 높은 증식억제능을 나타내었다. 젖산균의 세포질 획분과 세포벽 획분을 대상으로 면역활성 실험을 실시한 결과, 장관면역 활성은 젖산균의 세포질 획분에서 양성 대조군으로 사용한 LPS와 같은 수준의 면역활성을 나타내었고, 특히 Lb. acidophilus속 균주들의 세포벽 획분의 장관 면역활성이 다른 균주보다 높게 나타났다. 한편 젖산균주의 세포질과 세포벽 성분에 대한 비장 림프구의 증식능은 대조군과 비슷한 수준으로 낮게 관찰되었으나, 이들의 대식 세포증식능은 세포벽 및 세포질 모두의 획분에서 대조군보다 높았으며 특히 세포벽 획분의 경우에는 양성대조군인 LPS 보다 높거나 유사한 정도의 높은 활성을 확인할 수 있었다. 이상의 결과로부터 시험 균주 중에서 Lb. acidophilus 균주인 DDS-1과 B-3208이 프로바이오틱스로서 요구되는 조건을 충족시킨다는 것을 알 수 있었으며, 이들 균주의 상업적 이용 가능성을 재차 확인할 수 있었다.

Keywords

References

  1. Havenaar R, Huis in't Veld JHJ. Probiotics: A general view. Vol. 1, pp. 151-170. In: The Lactic Acid Bacteria in Health and Disease. Wood BJB (ed). Elsevier, New York, NY, USA (1992)
  2. Isolauri E, Salminen S, Ouwehand AC. Probiotics. Best Prac. Res. Cl. Em. 18: 299-313 (2004) https://doi.org/10.1016/j.bpg.2003.10.006
  3. Sanders ME. Probiotics. Food Technol.-Chicago 53: 67-77 (1999)
  4. Gill HS. Probiotics to enhance anti-infective defenses in the gastrointestinal tract. Best Prac. Res. Cl. Em. 17: 755-773 (2003) https://doi.org/10.1016/S1521-6918(03)00074-X
  5. Jayaprakasha HM, Yoon YC, Paik HD. Probiotic functional dairy foods and health claims: An overview. Food Sci. Biotechnol. 13: 523-528 (2005)
  6. Saarela M, Lahteenmaki L, Crittenden R, Salminen S, Mattila-Sandholm T. Gut bacteria and health foods- the European perspective. Int. J. Food Microbiol. 78: 99-117 (2002) https://doi.org/10.1016/S0168-1605(02)00235-0
  7. Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84: 197-215 (2000) https://doi.org/10.1016/S0168-1656(00)00375-8
  8. Hyronimus B, Marrec CL, Sassi AH, Deschamps A. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61: 193-197 (2000) https://doi.org/10.1016/S0168-1605(00)00366-4
  9. Coconnier MH, Klaenhammer TR. Kerneis S, Bernet MF, Servin AL. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Appl. Environ. Microb. 58: 2034-2039 (1992)
  10. Kim ER, Jung HK, Juhn SL, YU JH. Factor affecting the adherence of Bifidobacteia to Caco-2 Cell. Korean J. Food Sci. Animo. Resour. 21: 133-141 (2001)
  11. Matsumura A, Saito T, Arakuni M, Kitazawa H, Kawai Y, Itoh T. New binding assay and preparative trial of cell-surface lectin from Lactobacillus acidophilus group lactic acid bacteria. J. Dairy Sci. 82: 2525-2329 (1999) https://doi.org/10.3168/jds.S0022-0302(99)75505-0
  12. Mukai T, Kaneko S, Matsumoto M, Ohori H. Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Int. J. Food Microbiol. 90: 357-362 (2004) https://doi.org/10.1016/S0168-1605(03)00317-9
  13. Kim SY, Shin KS, Lee H. Screening of lactic acid bacteria with potent adhesive property in human colon using colonic-mucin binding assay. Korean J. Food Sci. Technol. 36: 959-967 (2004)
  14. Gill HS. Stimulation of immune system by lactic acid cultures. Int. Dairy J. 8: 535-544 (1998) https://doi.org/10.1016/S0958-6946(98)00074-0
  15. Kim JH, Shin KS, Lee H. Characterization and action mode of anti-complementary substance prepared from Lactobacillus plantarum. Korean Food Sci. Technol. 34: 290-295 (2002)
  16. Shin MS, Yu KW, Shin KS, Lee H. In vitro bone marrow cell proliferation of cell wall preparation from Bifidobacterium bifidum SL-21. Korean J. Food Sci. Technol. 36: 484-489 (2004)
  17. Shin MS, Yu KW, Shin KS, Lee H. Enhancement of immunological activity in mice with oral administration of cell wall components of Bifidobacterium bifidum. Food Sci. Biotechnol. 13: 85-89 (2004)
  18. Kim SY, Shin KS, Lee H. Immunopotentiating activities of cellular components of Lactobacillus brevis FSB-1. J. Korean Soc. Food Sci. Nutr. 33: 1552-1559 (2004) https://doi.org/10.3746/jkfn.2004.33.9.1552
  19. Roy D. Media for the isolation and enumeration of bifidobacteria in dairy products. Int. J. Food Microbiol. 69: 167-182 (2001) https://doi.org/10.1016/S0168-1605(01)00496-2
  20. Pennacchia C, Ercolini D, Blaiotta G. Pepe O, Mauriello G, Villani F. Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics. Meat Sci. 67: 309-317 (2004) https://doi.org/10.1016/j.meatsci.2003.11.003
  21. Talwalkar A, Kailasapathy K. Comparison of selective and differential media for the accurate enumeration of strains of Lactobacillus acidophilus, Bifidobacterium ssp. and Lactobacillus casei complex from commercial yoghurts. Int. Dairy J. 14: 143-149 (2004) https://doi.org/10.1016/S0958-6946(03)00172-9
  22. Hong T, Matsumoto T, Kiyohara H, Yamada H. Enhanced production of hematopoetic growth factors through T cell activation in Peyer's patches by oral administration of kampo (Japanese herbal) medicine, 'Juzen-Taiho-To'. Phytomedicine 5: 353-360 (1998) https://doi.org/10.1016/S0944-7113(98)80017-2
  23. Zheng WH, Bastianetto S, Mennicken F, Ma W, Kar S. Amyloed $\beta$-peptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septal cultures. Neuroscience 115: 201-211 https://doi.org/10.1016/S0306-4522(02)00404-9
  24. Suzuki I, Tanaka H, Kinoshita A, Oikawa S, Osawa M, Yadomae T. Effects of orally administered $\beta$-glucan on macrophage function in mice. Int. J. Immunopharmacol. 12: 675-684 (1990) https://doi.org/10.1016/0192-0561(90)90105-V
  25. Lee NK, Kim TH, Choi SY, Lee SK, Park HD. Identification and probiotic properties of Lactobacillus lactis NK24 Isolation from jeotgal, a Korean fermented food. Food Sci. Biotechnol. 13: 417-420 (2004)
  26. Shah NP. Probiotic bacteria: Selective enumeration and survival in dairy foods. J. Dairy Sci. 83: 894-907 (2000) https://doi.org/10.3168/jds.S0022-0302(00)74953-8
  27. Gilliland SE, Staley TE, Bush LJ. Importance of bile tolerance of Lact. acidophilus used as a dietary adjunct. J. Dairy Sci. 67: 3045-3051 (1984) https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  28. Gilliland SE, Speck ML. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microb. 33: 15-18 (1977)
  29. Erkki S, Petaja E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55: 297-300 (2000) https://doi.org/10.1016/S0309-1740(99)00156-4
  30. Fuller R. Probiotics in man and animal. J. Appl. Bacteriol. 66:365-378 (1989) https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  31. Kenji Y, Takuya M, Hiromu T, Tomokazu N, Kyoto S, Tetsuki T, Hidehiko K. Binding specificity of Lactobacillus to glycolipids. Biochem. Biophysic. Res. Co. 228: 148-152 (1996) https://doi.org/10.1006/bbrc.1996.1630
  32. Matsumoto M, Tani H, Ono H, Ohishi H, Benno Y. Adhesive property of Bifidobacterium lactis LKM512 and predominant bacteria of intestinal microflora to human intestinal mucin. Curr. Microbiology. 44: 212-215 (2002) https://doi.org/10.1007/s00284-001-0087-4
  33. Matsumura A, Saito T, Arakuni M, Kitazawa H, Kawai Y, Itoh T. New binding assay and preparative trial of cell-surface lectin from Lactobacillus acidophilus group lactic acid bacteria. J. Dairy Sci. 82: 2525-2329 (1999) https://doi.org/10.3168/jds.S0022-0302(99)75505-0
  34. Reid G, Burton J. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 4: 3119-324 (2002)
  35. Shin MS, Kim HM, Kim GT, Huh CS, Bae HS, Baek YJ. Selection and characteristics of Lactobacillus acidophilus isolated from Korean feces. Korean J. Food Sci. Technol. 31: 495-501 (1999)
  36. Chae OW, Shin KS, Chung HK, Choe TB. Immunostimulation effects of mice fed with cell lysate of Lactobacillus plantarum isolated from kimchi. Korean J. Biotechnol. Bioeng. 13: 424-430 (1998)