DOI QR코드

DOI QR Code

RF MEMS Switches and Integrated Switching Circuits

  • Liu, A.Q. (School of Electrical & Electronic Engineering, Nanyang Technological University Nanyang Avenue) ;
  • Yu, A.B. (School of Electrical & Electronic Engineering, Nanyang Technological University Nanyang Avenue) ;
  • Karim, M.F. (School of Electrical & Electronic Engineering, Nanyang Technological University Nanyang Avenue) ;
  • Tang, M. (School of Electrical & Electronic Engineering, Nanyang Technological University Nanyang Avenue)
  • Published : 2007.09.30

Abstract

Radio frequency (RF) microelectromechanical systems (MEMS) have been pursued for more than a decade as a solution of high-performance on-chip fixed, tunable and reconfigurable circuits. This paper reviews our research work on RF MEMS switches and switching circuits in the past five years. The research work first concentrates on the development of lateral DC-contact switches and capacitive shunt switches. Low insertion loss, high isolation and wide frequency band have been achieved for the two types of switches; then the switches have been integrated with transmission lines to achieve different switching circuits, such as single-pole-multi-throw (SPMT) switching circuits, tunable band-pass filter, tunable band-stop filter and reconfigurable filter circuits. Substrate transfer process and surface planarization process are used to fabricate the above mentioned devices and circuits. The advantages of these two fabrication processes provide great flexibility in developing different types of RF MEMS switches and circuits. The ultimate target is to produce more powerful and sophisticated wireless appliances operating in handsets, base stations, and satellites with low power consumption and cost.

Keywords

References

  1. A. S. Morris, S. Cunningham, D. Pereus and G. Schropfer, 'High-performance integrated RFMEMS: Part 1 – the process,' 11th GaAs Symposium, Munich 2003 pp. 325 - 328
  2. H. A. C. Tilmans, W De Raedt and E. Beyne, 'MEMS for wireless communications: 'from RFMEMS components to RF-MEMS-SiP,' J. Micromech. Miroeng. Vol. 13, 2003 pp. S139 - 163 https://doi.org/10.1088/0960-1317/13/4/323
  3. Y. H. Shu, J. A. Navaro and K. Chang, 'Electronically switchable and tunable coplanar waveguide-slotline band-pass filters,' IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, March 1991 pp. 548-554 https://doi.org/10.1109/22.75299
  4. J. Y. Park, G. H. Kim, K. W. Chung and J. U. Bu, 'Monolithically integrated micromachined RF MEMS capacitive switches,' Sensors & Actuators A: Phys. Vol. 89 2001 pp. 88-94 https://doi.org/10.1016/S0924-4247(00)00549-5
  5. E. J. J. Kruglick and K. S. J. Pister, 'Lateral MEMS microcontact considerations,' IEEE J. Microelectromech. Systems, Vol. 8, September 1999 pp. 264-271 https://doi.org/10.1109/84.788630
  6. M. Tang, A. Q. Liu, and A. Agarwal, 'A low-loss single-pole double-throw (SPDT) switch circuit,' The 14th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '07), 10-14 June 2007, Lyon, France (accepted)
  7. M. Tang, A. Q. Liu, A. Agarwal and M. H. Habib, 'A single-mask substrate transfer technique for fabrication of high-aspect-ratio micromachined structures,' J. Micromech. Microeng, Vol. 17, No. 8, 2007 pp. 1575-1582 https://doi.org/10.1088/0960-1317/17/8/021
  8. M. Tang, A. Q. Liu, J. Oberhammer, 'A siliconon- glass single-pole double-throw (SPDT) switching circuit integrated with silicon-core metal-coated transmission line,' IEEE J. Microelectromech. Syst., (submitted)
  9. A. B. Yu, A. Q. Liu, Q. X. Zhang and H. M. Hosseini, 'Effects of surface roughness on electromagnetic characteristics of capacitive switches,' J. Micromech. Miroeng. Vol 16, 2006 pp. 2157-2166 https://doi.org/10.1088/0960-1317/16/10/032
  10. A. B. Yu, A. Q. Liu, Q. X. Zhang, A. Alphones, L. Zhu and S. A. Peter, 'Improvement of isolation MEMS capacitive switch via membrane planarization,' Sensors and actuators A: Phys. Vol. 119 2005 pp. 206 - 213 https://doi.org/10.1016/j.sna.2004.09.010
  11. A. B Yu, A Q Liu, J. Oberhammeh, Q. X. Zhang and H. M. Hosseini, 'Characterization and optimization of dry releasing for the fabrication of RF MEMS capacitive switches,' J. Micromech. Microeng, Vol. 17, No. 10 2007 pp. 2024-2030 https://doi.org/10.1088/0960-1317/17/10/014
  12. A. Q. Liu, M. Tang, A. Agarwal, and A. Alphones, 'Low-loss lateral micromachined switches with frequencies from DC to 25 GHz,' J. Micromech. Miroeng., Vol. 15, No. 1, 2005 pp. 157-167 https://doi.org/10.1088/0960-1317/15/1/023
  13. J. Schimkat, 'Contact materials for microrelays,' 11th IEEE International Conference on Microelectromechanical Systems, Heidelberg, Germany, 1998, pp. 190-194
  14. A. B. Yu, A. Q. Liu, Q. X. Zhang and H. M. Hosseini, 'Micromachined DC contact switch on low-resistivity silicon substrate,' Sensors & Actuators A Vol. 127 February 2006 pp. 24-30 https://doi.org/10.1016/j.sna.2005.11.011
  15. X. B. Yuan, Z. Peng, James C. M. Hwang, D. Forehand and Charles L. Goldsmith, 'Temperature acceleration of dielectric charging in RF MEMS capacitive switches,' g effects on capacitive MEMS actuators,' IEEE MTT-S Int. Microwave Symp. Digest, 11-16 June 2006, San francisco, USA, pp. 47-50
  16. M. Tang, W. Palei, W. L. Goh, A. Agarwal, L. C. Law and A. Q. Liu, 'A single pole double throw (SPDT) circuit using lateral metal contact micromachined switches,' IEEE MTT-S Int. Microwave Symp. Digest, 8-12 June 2004, Boston, USA, pp. 581-584
  17. A. B. Yu, A. Q. Liu , and Q. X. Zhang, 'Wide tuning range MEMS band-pass filter with inductance change,' The 13th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers '05), 5-9 June, 2005, Seoul, Korea, Vol 2, pp. 2061-2064
  18. M. F. Karim, A. Q. Liu, A. Alphones and A. B. Yu, 'A tunable bandstop filter via the capacitance change of micromachined switches,' J. Micromech. Microeng, Vol. 16, No. 4, pp. 851-861, 2006 https://doi.org/10.1088/0960-1317/16/4/023
  19. X. J. Zhang, A. Q. Liu, M. F. Karim, A. B. Yu, Z. X. Shen, 'MEMS based photonic bandgap (PBG) bandstop filter,' IEEE MTT-S Int. Microwave Symp. Digest, 8-12 June 2004, Boston, USA, pp. 1463-1466
  20. M. F. Karim, A. Q. Liu, A. B. Yu, and A. Alphones, 'Miniaturized Bandpass Filter for Broad-Band Applications, IEE Electronics Letters, (submitted)
  21. M. F. Karim, A. Q. Liu, A. Alphones and A. B. Yu, 'A novel reconfigurable filter using periodic structures,' IEEE MTT-S Int. Microwave Symp. Digest, 11-16 June, 2006, San Francisco, USA pp. 943-946
  22. M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, 'A reconfigurable micromachined switching filter using periodic structures,' IEEE Transaction on Microwave Theory & Tech., Vol. 55, No. 6 June 2007 pp. 1154-1162 https://doi.org/10.1109/TMTT.2007.897670

Cited by

  1. Characterization and Adhesion of Interacting Surfaces in Capacitive RF MEMS Switches Undergoing Cycling vol.24, pp.15-16, 2010, https://doi.org/10.1163/016942410X508299
  2. Mechanical characterizations of topology-insensitive rivet bonding using the sidewall bond principle vol.7, pp.2, 2011, https://doi.org/10.1002/tee.20701
  3. AlN Based RF MEMS Tunable Capacitor with Air-Suspended Electrode with Two Stages vol.13, pp.1, 2013, https://doi.org/10.5573/JSTS.2013.13.1.015
  4. A silicon-nanowire memory driven by optical gradient force induced bistability vol.107, pp.26, 2015, https://doi.org/10.1063/1.4939114
  5. A new analytical model for switching time of a perforated MEMS switch pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-3803-8
  6. An improved analytical model for static pull-in voltage of a flexured MEMS switch pp.1432-1858, 2020, https://doi.org/10.1007/s00542-018-3911-5
  7. A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive vol.19, pp.3, 2009, https://doi.org/10.1088/0960-1317/19/3/035011