Growth Promotion of Tomato Seedlings by Applicaion of Bacillus sp. Isolated from Rhizosphere

근권에서 분리한 Bacillus sp.의 적용에 의한 토마토의 생장 촉진

  • Lee, Kang-Hyeong (Division of Life Sciences, Research Institute of Life Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Division of Life Sciences, Research Institute of Life Sciences, Kangwon National University)
  • 이강형 (강원대학교 자연과학대학 생명과학부) ;
  • 송홍규 (강원대학교 생명과학연구소)
  • Published : 2007.12.30

Abstract

Two bacterial strains isolated from soil (Bacillus subtilis strains: PS2 and RFO41) were evaluated to determine their promoting effect on the growth of tomato seedling under axonic and pot conditions. The production of phytohormone, such as indole-3-acetic acid, indole-3-butyric acid, gibberellin and zeatin by these two strains was investigated as possible mechanisms for plant growth stimulation. Both PS2 and RFO41 were shown to produce various phytohormones, and. the production of phytohormones was stimulated by the addition of peptone-rich brain heart broth medium. In addition, these bacteria exhibited high levels of phosphatase activity, which ranged from 2.18 to $2.7\;{\mu}\;{\rho}-nitrophenol/ml/hr$. PS2 and RFO41 were applied to the pot test for growth of tomato seed with phosphate. Root and shoot lengths of germinated tomato after 15 days were 45.5% and 36.5% longer than that of control in RFO41 treated samples, respectively. Baciller sp. PS2 and RFO41 may have a potential for biofertilizer in the agriculture.

식물호르몬(phytohormone)을 생성하며 불용성 인산 가용화능이 있는 세균을 근권에서 분리하여 각각의 생성능을 조사하고 토마토 씨앗에 적용하여 생장촉진 가능성을 조사함으로써 분리 균주의 생물학적 비료로서의 가능성을 제시하고자 하였다. 분리 균주인 Bacillus sp. PS2와 RFO41은 첨가된 두 종류의 500 mg/L 불용성 인산을 약 80% 이상 가용화 시켰으며, 펩톤이 풍부한 생장배지에서 여러 가지 식물호르몬을 생성하였다. 이를 토대로 토마토 씨앗의 생장촉진 실험을 수행한 결과, PS2와 RFO41이 적용된 실험군의 발아한 토마토모종의 뿌리와 줄기의 길이 생장은 대조군에 비하여 각각 26.8과 34.8% 및 45.5와 36.5%가 증가하였다. 이 결과는 분리 균주인 Bacillus sp. PS2와 RFO41의 인산 가용화능과 식물호르몬의 생성능이 토마토 씨앗의 발아와 생장에 직접적인 영향을 주는 요인으로 작용한 결과라고 판단할 수 있으며, 생물학적 비료로서의 가치를 뒷받침하는 것이라고 할 수 있다.

Keywords

References

  1. 강선철, 최명철. 1998. 인산가용화 사상균 Penicillium sp. PS-113 균주의 분리 및 배 양 특성. 한국생물공학회지 13, 497-501
  2. 전종수, 안태석, 송홍규. 2003. 식물생장을 촉진하는 토양세균들의 indoleacetic acid 생성능과 인산 가용화능. 기초과학연구 14, 183-192
  3. Arora, D.K., A.B. Filonow, and J.L. Lockwood. 1983. Bacterial chemotaxis to fungal propagaules in vitro and soil. Can. J. Microbiol. 29, 1104-1109 https://doi.org/10.1139/m83-170
  4. Cho, J.Y., K.C. Nah, and S.J. Chung. 1998. Effects of seed immersion and bacterialization into peat moss compost with culture solution of photosynthetic bacteria on the early growth of tomato plug seedlings. J. Kor. Soc. Hort. Sci. 39, 24-29
  5. Cleaceri, L.S., A.E. Greenmerg, and A.D. Eaton. 1998. Standard methods for examination of water and wastewater. 20th (ed). APHA-AWWA-WEF. Washington, D.C., USA
  6. Cohen, J.D., J.P. Slovin, and A.M. Hendrickson. 2003. Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. TREND Plant Sci. 8, 197-199 https://doi.org/10.1016/S1360-1385(03)00058-X
  7. De Fritas, J.R., M.R. Banerjee, and J.J. Germida. 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Bio. Fertil. Soils 24, 358-364 https://doi.org/10.1007/s003740050258
  8. Dey, R., K.K. Pal, D.M. Bhatt, and S.M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis phygaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159, 371-394 https://doi.org/10.1016/j.micres.2004.08.004
  9. Freitas, J.R., M.R. Banerjee, and J.J. Germida. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils 24, 358-364 https://doi.org/10.1007/s003740050258
  10. Gray, E.J. and D.L. Smith. 2005. Intracellular and extracellular PGPR commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 37, 395-412 https://doi.org/10.1016/j.soilbio.2004.08.030
  11. Hilda, R. and F. Reynaldo. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319-339 https://doi.org/10.1016/S0734-9750(99)00014-2
  12. Karadeniz, A., S.F. Topcuoglu, and S. Inan. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World. J. Microbiol. Biotech. 22, 1061-1064 https://doi.org/10.1007/s11274-005-4561-1
  13. Leach, A.M., D.L. Burden, and G.M. Hieftje. 1999. Radioluminescence detecter for the flow injection determination of phosphorus as vanadomolydophosphoric acid. Anal. Chim. Acta 402, 267-274 https://doi.org/10.1016/S0003-2670(99)00536-X
  14. Leveau, J.H.J. and S.E. Lindow. 2005. Utilization of plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71, 2365-2371 https://doi.org/10.1128/AEM.71.5.2365-2371.2005
  15. Lifshitz, R., K.W. Kilepper, M. Kozlowski, C. Simonson, J. Carlson, E.M. Tipping, and I. Zaleska. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic condition. Can. J. Microbiol. 33, 390-395 https://doi.org/10.1139/m87-068
  16. Macros, A., S. Gagne, and H. Antoun. 1995. Effect of compost on rhizosphere microflora of tomato and on the incidence of plant growth-promotion rhizobacteria. Appl. Environ. Microbiol. 61, 194-199
  17. Mayak, S., T. Tarosh, and B.R. Glick. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166, 525-530 https://doi.org/10.1016/j.plantsci.2003.10.025
  18. Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
  19. Muzyer, G., C.W. Ellen, and G.U. Andre. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700
  20. Narsian, V. and H.H. Patel. 2000, Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol. Biochem. 32, 559-565 https://doi.org/10.1016/S0038-0717(99)00184-4
  21. Patten, C.L. and B.R. Glick. 2002. Role of pseudomonas putida indolacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795-3801 https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  22. Pompei, R., G. Cornaglia, A. Ingianni, and G. Satta. 1990. Use of a novel phosphatase test for simplified identification of species of the tribe Proteeae. J. Clin. Microbiol. 28, 1214-1218
  23. Scher, F.M., J.W. Kloepper, and C.A. Singleton. 1985. Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Can. J. Microbiol. 31, 570-574 https://doi.org/10.1139/m85-106
  24. Seymour, P.W.K. and N. Doetsch. 1973. Chomotaxis responses by motile bacteria. J. Gen. Microbiol. 78, 287-296 https://doi.org/10.1099/00221287-78-2-287
  25. Stamford, N.P., P.R. Santo, C.E.S. Snatos, A.D.S. Freitas, S.H.L. Dias, and M.A. Lira, Jr. 2007. Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil. Biores. Technol. 98, 1311-1318 https://doi.org/10.1016/j.biortech.2006.04.037
  26. Whitelaw, M.A., T.J. Harden, and K.R. Helyar. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 31, 655-665 https://doi.org/10.1016/S0038-0717(98)00130-8