Top-down Fish Biomanipulation Experiments on Algal Removal Effects

조류제거 효과에 대한 Top-down 어류 조작실험

  • Lee, Sang-Jae (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Lee, Jae-Yon (School of Bioscience and Biotechnology, Chungnam National University) ;
  • An, Kwang-Guk (School of Bioscience and Biotechnology, Chungnam National University)
  • Published : 2007.09.30

Abstract

This study was to test algal removal efficiency by top-down fish biomanipulation experiments in the laboratory during Agust${\sim}$September 2000. We selected eight candidate fishes for the biomanipulation. We set up the experiments of eight fish-treatment tanks (3${\sim}$6 fishes) with initial chlorophyll-${\alpha}$ concentrations (CHL-${\alpha}$) of $100{\sim}120{\mu}g\;L^{-1}$ and one control tank including no fish with the same initial CHL-${\alpha}$. All tanks were maintained water quality of dissolved oxygen $(5.3{\sim}8.2mg\;L^{-1})$ and pH $(7.4{\sim}8.1)$ in the tests. During the biomanipulation, DO and pH in the treatments were lower than those of the control, while conductivity increased gradually in the treatments. Biomanipulation experiments showed that CHL-${\alpha}$ increased 13% and 0% (mean values of 8 fishes) in the controls and treatments, respectively. These results indicate that algal growth was maintained in the control and fish treatments, but the rate of CHL-${\alpha}$ in the treatments was lower than that of the control. The removal rates of bluegreens algae decreased 32% in the control, and 20% in treatments (mean values of 8 fishes) respectively, In other words, bluegreen algae showed greater growth rate in the fish treatments than the control and this was due to higher nutrients supplied from fish excretions. Overall, simple fish biomanipulation on algal control was not effective at all in these laboratory tests.

본 연구는 Top-down 어류조작 실험에 의한 조류제거 효과를 평가하는 것으로써, 실험대상 어종으로 국내 농업용 저수지에 우점하는 8종의 어류를 선정하였다. 대조군 수조 및 어류처리군 수조($3{\sim}6$개체)의 엽록소-${\alpha}$ (CHL-${\alpha}$) 초기 농도는 $100{\sim}120{\mu}g\;L^{-1}$로 고정하였으며 용존산소 $5.3{\sim}8.2\;mg\;L^{-1}$, 수소 이온농도는 pH $7.4{\sim}8.1$를 유지시켰다. 실험기간 동안 어류 처리군 수조의 용존산소량과 수소이온농도가 대조군에 비해 낮게 측정된 반면 전기전도도는 점진적으로 증가하는 수치를 보였다. 한편 대조군과 어류처리군의 CHL-${\alpha}$는 각각 13%, 6%로 증가하여 여전히 조류의 생장이 이루어지고 있음을 보였으나, 어류처리 군에서 CHL-${\alpha}$ 증가율은 대조군에서 보다 낮게 나타났다. 대조군과 어류처리군의 남조류는 각각 32%, 20% 감소를 보였으며, 남조류 생장률은 대조군보다 어류처리군에서 크게 나타났다. 이는 어류 배설물에 의한 영양염류의 증가로 인한 것으로 사료되었다. 따라서 본 연구결과 어류조작에 의한 조류제거 효과는 거의 없는 것으로 나타났다.

Keywords

References

  1. 김백호, 김윤호, 한명수. 2004. 겨울철 녹조발생 원인종 Stephanodiscus hantzschii의 생물학적제어를 위한 미소생물 제재의 적용실험, 육수지 37(2): 236-240
  2. 김백호, 최민규, 고촌전자. 2001. 어린백련어의 성장에 대한 동,식물 플랑크톤의 먹이 기여도, 육수지 34(2): 98-105
  3. 나은경, 신경숙, 장재헌, 강 호. 2003. 전자선조사를 이용한 부영양화 호수의 조류제어에 관한 연구, 대한환경공학회 2003 춘계학술연구발표대회. p. 504-509
  4. 농림부. 2005. 농업용 저수지의 녹조제어 기법개발. p. 487-495
  5. 윤주덕, 장민호, 김명철, 남귀숙, 황순진, 주기재. 2006. 농업용 저수지의 어류군집 특성, 육수지 39(1): 131-137
  6. 이은형, 서동일, 황현동, 윤진혁, 최재훈. 2006. 도시 하천에서의 어류 폐사 원인 분석. 대한상하수도학회 20(4): 573-584
  7. 이정호, 박종근, 김은정. 2002. 국내 주요 호수의 식물플량크톤 종조성 및 영양단계 평가, 한국조류학회지 17: 275-281
  8. Ahn, CY, M.H. Park, S.H. Joung, H.S. Kim, K.Y. Jang and H.M. Oh. 2003. Growth inhibition of cyanobacteria by ultrasonic radiation: Laboratory and enclosure studies. Envion. Sci. Technol. 37: 3031-3037 https://doi.org/10.1021/es034048z
  9. Alberto, A., F.M.C. Antonio and R.V. Jose. Styanax fascia-tus from a sewage-contaminated river. Ecotoxicology and Environmental Safety 61: 247-255
  10. APHA. 1985. Standard methods for the examination of water and waste water. 16th ed. New York, American Public Health Association, p. 1067-1072
  11. Gosselain, V., J.-P. Descy, L. Virous, C. Joaquim-Justo, A. Hammer, A. Metens and S. Schweitzer. 1998. Geazing by large river zooplankton: a key to summer potamo-plankton decline? The caes of Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia 369/370: 199-216 https://doi.org/10.1023/A:1017071909997
  12. Kolmakov, V.I., N.A. Gaevskii, E.A. Ivanova, O.P. Dubovs-kaya, I.V. Gribovskaya and E.S. Kravchuk. 2002. Comparative analysis of ecophysiological charateristics of Stephanodiscus hantzschii Grun. In the periods of its bloom in recreational water bodies. Russian J. Ecol. 33: 97-103 https://doi.org/10.1023/A:1014448707663
  13. Prokopkin. I.G., V.G. Gubanov and M.I. Gladyshev. 2006. Modeling the effect of lanktivorous fish removal in a reservoir on the biomass of cyanobacteria. Ecological Modelling. 190: 419-431 https://doi.org/10.1016/j.ecolmodel.2005.05.011
  14. Reynold, D. 1985. The ecology of freshwater pytoplankton. Cambridge Univ Press. 384p
  15. Richter. 1986. Biomanipulation and its feasibility for water quality management in shallow eutrophic water bodies in the Netherlands. Aquatic Ecology. 20: 165-172
  16. Sigee, D.C., R. Glenn, M.J. Andrews, E.G. Andrews, E,G. Belinger, R.D. Butler, H.A.S. Epton and R.D. Hendry. 1999. Biological control of cyanobacteria: principles and possibilities. Hydrobiologia 395/396: 161-172 https://doi.org/10.1023/A:1017097502124
  17. Starling, F.L.R.M. 1993. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Para-noa reservoir (Brasilia, Brazil): a mesocosm experiment. Hydrobiologia 257: 143-152 https://doi.org/10.1007/BF00765007