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Abstract
To understand the mechanism of transcriptional regulation, 
it is essential to detect promoters and regulatory elements. 
Various kinds of methods have been introduced to improve 
the prediction accuracy of regulatory elements. Since 
there are few experimentally validated regulatory elements, 
previous studies have used criteria based solely on the 
level of scores over background sequences. However, 
selecting the detection criteria for different prediction 
methods is not feasible. Here, we studied the calibration 
of thresholds to improve regulatory element prediction. We 
predicted a regulatory element using MATCH, which is a 
powerful tool for transcription factor binding site (TFBS) 
detection. To increase the prediction accuracy, we used 
a regulatory potential (RP) score measuring the similarity 
of patterns in alignments to those in known regulatory 
regions. Next, we calibrated the thresholds to find relevant 
scores, increasing the true positives while decreasing 
possible false positives. By applying various thresholds, 
we compared predicted regulatory elements with validated 
regulatory elements from the Open Regulatory Annotation 
(ORegAnno) database. The predicted regulators by the 
selected threshold were validated through enrichment 
analysis of muscle-specific gene sets from the Tissue-Specific 
Transcripts and Genes (T-STAG) database. We found 14 
known muscle-specific regulators with a less than a 5% 
false discovery rate (FDR) in a single TFBS analysis, as 
well as known transcription factor combinations in our 
combinatorial TFBS analysis.
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Introduction
The discovery of transcription factor binding sites (TFBSs) 
in promoters is important for understanding transcriptional 
regulation mechanisms. Over the past few years, numerous 
tools have been developed for the prediction of TFBSs. 
However, there has been little information about the selection 
of thresholds among various prediction tools. A threshold 
is assumed to be the cutoff for prediction of precise TFBSs.

Recently, Tompa et al. reported a study of 13 previously 
well-known prediction tools to provide biologists with 
guidance in their choice of these tools (Tompa, Li, Bailey, 
Church, De Moor, Eskin, Favorov, Frith, Fu, Kent, Makeev, 
Mironov, Noble, Pavesi, Pesole, Regnier, Simonis, Sinha, 
Thijs, van Helden, Vandenbogaert, Weng, Workman, Ye 
and Zhu 2005). From the results of an analysis of a set of 
regulatory regions of putatively coregulated genes, almost 
80% false positives existed in the prediction results.

We had a various result applying different thresholds and 
parameters of the prediction tools.In this case, biologists 
should determine the reliable parameters and validation 
process of putative regulatory regions by a number of 
experiments, which is often time-consuming work. Since 
nothing is assumed, a priori information used to predict 
regulatory elements in this analysis could significantly 
improve the detection accuracy with various biological 
aspects. Here, we report a calibration study to find the 
relatively relevant detection threshold using incorporated 
biological information that is summarized in binding profiles 
(position weight matrix, or PWM), sequence conservation 
information, and experimentally validated regulatory element 
data.

Usually,TF-binding sequence information is summarized 
in a specific data format to facilitate the analysis of possible 
TFBSs. A PWM is composed of a set of experimentally 
defined TF-binding sequences and reflects the binding 
specificity of TFs. TRANSFAC (Wingender, Chen, Fricke, 
Geffers, Hehl, Liebich, Krull, Matys, Michael, Ohnhauser, 
Pruss, Schacherer, Thiele and Urbach 2001; Matys, 
Fricke, Geffers, Gossling, Haubrock, Hehl, Hornischer, 
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Fig. 1.  Analysis flowchart. For prediction of reliable TFBSs, we
performed sequential procedures including promoter sequence
analysis, putative TFBS identification, conserved TFBS identification,
and over-representation of TFBSs.

Karas, Kel, Kel-Margoulis, Kloos, Land, Lewicki-Potapov, 
Michael, Munch, Reuter, Rotert, Saxel, Scheer, Thiele and 
Wingender 2003) and JASPAR (Vlieghe, Sandelin, De 
Bleser, Vleminckx, Wasserman, van Roy and Lenhard 2006) 
are two well-recognized databases that store eukaryotic 
TFs, descriptions of their respective binding affinities, and 
PWMs. Here, we used PWM information from TRANSFAC 
version 10.2.

One of the best strategies for finding functional sequences 
is to look for sequences that are conserved across species 
(Margulies and Green 2003; Woolfe, Goodson, Goode, Snell, 
McEwen, Vavouri, Smith, North, Callaway, Kelly, Walter, 
Abnizova, Gilks, Edwards, Cooke and Elgar 2005). There 
has been significant progress in computational approaches 
to analyze interspecies genomic sequence alignments 
and to distinguish regulatory regions from neutrally evolving 
DNA.

Recently, the phastCons score (Siepel, Bejerano, 
Pedersen, Hinrichs, Hou, Rosenbloom, Clawson, Spieth, 
Hillier, Richards, Weinstock, Wilson, Gibbs, Kent, Miller 
and Haussler 2005) and regulatory potential (RP) score 
(King, Taylor, Elnitski, Chiaromonte, Miller and Hardison 
2005) were introduced to calculate the conservation score 
for eliminating false putative TFBSs and refine the 
candidates of highly conserved elements. The phastCons 
score results from multiple alignments using the phastCons 
program based on a phylogenetic hidden Markov model 
(phylo-HMM). RP measurement is a computational score 
to aid in the identification of putative regulatory sites in the 
human genome. Unlike tools based on searching for 
known TFBSs, phastCons and RP scores simulate a 
comparative genomics method. These scores are computed 
from genome-wide alignments of the human genome with 
the genomes of other organisms. This study applied RP 
scores to putative TFBS information produced by the 
MATCH program in TRANSFAC.

Moreover, gene expression in higher organisms is 
regulated by a combinatorial interaction of multiple TFs. 
A combinatorial element is a functional unit used to identify 
colocalizing TFBSs in a genome. Multiple TFBSs are clustered 
together within specific promoter regions. These functionally 
related binding sites are in a narrow distance range from 
about 25 to 200 bp (Wasserman and Fickett 1998; Berman, 
Nibu, Pfeiffer, Tomancak, Celniker, Levine, Rubin and 
Eisen 2002; Kreiman 2004). Several algorithms have been 
developed for detecting putative clusters of binding sites 
and analyzing the combinatorial interaction of multiple TFs 
(Alkema, Johansson, Lagergren and Wasserman 2004; 
Kreiman 2004).We searched known combinations of 
muscle-specific regulatory elements to validate whether the 
result of our combinatorial TFBS prediction can be used 
to predict possible combinatorial regulatory units.

Methods
We performed several analysis procedures for enhancing 
the accuracy of the prediction. In Fig. 1, our analysis 
scheme is briefly described in a flowchart.

Data sources and transcription factor binding site 
prediction
We collected promoter sequences in the 2-kb upstream 
region of annotated transcription start sites of Refseq 
genes from the UCSC Genome Browser (Hinrichs, Karolchik, 
Baertsch, Barber, Bejerano, Clawson, Diekhans, Furey, 
Harte, Hsu, Hillman-Jackson, Kuhn, Pedersen, Pohl, Raney, 
Rosenbloom, Siepel, Smith, Sugnet, Sultan-Qurraie, Thomas, 
Trumbower, Weber, Weirauch, Zweig, Haussler and Kent 
2006). Using upstream sequences, we predicted TFBSs 
using the MATCH program in TRANSFAC professional 
version 10.2, which has the largest collections of TFBS 
profiles (Kim, S.B., Ryu, G.M., Kim, Y.J. et al. 2007).

We predicted TFBSs using 584 vertebrate matrices 
from TRANSFAC. We attempted to select the best TFBS 
cutoff, adding 0.05 to the value of matrix similarity starting 
from 0.7 to 0.9 and to the core similarity value ranging from 
0.75 to 0.95. The matrix similarity is a score that describes 
the quality of a match between a matrix and an arbitrary 
part of the input sequences. Analogously, the core similarity 
value denotes the quality of a match between the core 
sequence of a matrix and a part of the input sequence.

Experimentally confirmed TFBSs were retrieved from 
ORegAnno (an open access database and system for 
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literature-derived promoters, TFBSs, and regulatory 
variation) for a true positive reference set (Montgomery, 
Griffith, Sleumer, Bergman, Bilenky, Pleasance, Prychyna, 
Zhang and Jones 2006). We used known binding sequences 
and transcription factor binding information of human 
genes from the ORegAnno database. All predicted binding 
sequences were produced using position-weight matrices 
composing the known positive binding site of human 
genes. Sequences predicted by the MATCH program 
were compared with the true set from ORegAnno using 
ClustalW (Fukami-Kobayashi and Saito 2002) for multiple 
sequence alignments. To detect a matched result from the 
comparison between ORegAnno real data and the predicted 
data, we selected all results that were complete or showed 
a partial overlap between the datasets in their alignments.

As a result, we selected a matrix similarity of 0.85 and 
a core similarity of 0.90 to find the real set and minimize 
false positives. To provide information regarding TFs and 
TFBSs by selected cutoff, we constructed information 
databases for genes, TFs, and TFBSs. These databases 
offered detailed gene and TF information using the 
selected cutoff. The TFBS information comprised the TFBS 
name, position, strand, matrix matching score, TFBS 
sequence, and TF information.

Selection of conserved regulatory elements
To detect conserved regulatory elements, we used the RP 
score. RP scores were computed from alignments of 
human (hg17), chimpanzee (panTro1), mouse (mm5), rat 
(rn3), and dog (canFam1) genome sequences. RP scores 
are values obtained by comparing the frequencies of short 
alignment patterns between known regulatory elements 
and neutral DNA (King, Taylor, Elnitski, Chiaromonte, 
Miller and Hardison 2005).

Because these data were the result of the alignment of 
five entire genomes, the constructed database of RP data 
had an enormous size of 8.1 gigabytes. To set an appropriate 
threshold that minimized false positives and maximized 
true positives, we validated the data using the ORegAnno 
real dataset by changing the RP threshold. Through the 
comparison of the true and predicted sets, we measured 
true positives and possible false positives by changing the 
RP scores ranging from 0 to 0.1. According to the threshold 
experiment described above, TFBSs that satisfied the RP 
cutoff condition among predicted TFBSs were detected as 
conserved regulatory elements.

Muscle-specific dataset
We used muscle-specific gene lists for significantly 
overrepresented TFBSs and the combination module. The 

T-STAG database is a resource for tissue-specific 
transcripts and genes (Gupta, Vingron and Haas 2005). 
We extracted 207 muscle-specific genes from the T-STAG 
database with default parameters. Next, we annotated the 
genes with the DAVID database (Dennis, Sherman, 
Hosack, Yang, Gao, Lane and Lempicki 2003), and 207 
genes with the Unigene ID were converted and filtered as 
91 Refseq mRNAs. We used 91 muscle-specific Refseq 
mRNAs for further analysis.

Enrichment analysis of muscle-specific gene sets
The enrichment of significant TFBSs and combinatorial 
TFBS analysis were statistically tested by calculation of 
p values based on Fisher’s exact test. Fisher’s exact test 
was used to determine the probability of a nonrandom 
association between the gene set and significant TFBSs 
and between the gene set and the TFBS combination of 
interest. To compute the p value for the test, the test compares 
the proportion of genes containing a particular cis-regulatory 
module to the proportion of genes having the background 
regulatory element set derived from whole genome 
information. One-sided Fisher exact probability was determined 
using the R statistics package (http://www.r-project.org).

Combinatorial TFBS prediction
Transcriptional regulation in eukaryotes is induced by 
multiple factors, in contrast with prokaryotes. In higher 
organisms, more complex signaling machinery plays an 
important role in the interactions of multiple TFs. For 
analyzing transcriptional regulation in higher organisms, 
a combinatorial approach is required for the sophisticated 
interactions of multiple factors (Halfon, Grad, Church and 
Michelson 2002; Bluthgen, Kielbasa and Herzel 2005; Kel, 
Konovalova, Waleev, Cheremushkin, Kel-Margoulis and 
Wingender 2006). All possible combinations of TFBSs in 
the entire genome were calculated as TFBS pairs. The 
distance between motifs in the module sets was less than 
100 bp. To calculate possible combinations of TFBSs, we 
performed a complete search of TFBS clusters in a 100-bp 
sliding window. In the combination analysis, the distance 
between TFBSs was considered. Precalculated combinatorial 
information was built into the database to reduce computing 
time in the analysis of gene sets.

Improvement of statistical significance
In a previous study, researchers suggested the q value to 
avoid the immense number of false positives in genome- 
wide analysis (Storey and Tibshirani 2003). The q value 
is similar to the well-known p value. While the p value 
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Fig. 2. ORegAnno database contents. Human TFBS data were
used for the analysis. A total of 251 data points were filtered 
through three steps. First, we filtered records with known TF 
information. Second, we extracted records aligned within 2000
bp upstream from TSS. Finally, we selected gene records with 
homologous information within 2000 bp upstream. From the last 
filtering step, 95 records were produced for further analysis.

Fig. 3. The performance test with varied thresholds. We 
performed an accuracy test with 53 genes in 95 records for each
threshold by varying 70% to 90% matching thresholds and an 
RP threshold of zero at the all-match threshold. Gradient bar 
represents the number of detected true positives with respect to
the left y-axis. Outlined gradient bar stands for the undetected
numbers that are false negatives. Solid line draws the total 
number of TFBSs of 53 genes with respect to the right y-axis.
While the match threshold increases, accuracy decreases. The
total number of TFBSs of 53 genes significantly decreased 
according to the increased thresholds. However, there was no
difference in the performance before and after the conserved 
sequence information was applied, and only the total number of
TFBSs decreased. This explains why the RP measurement is
very effective in reducing the putative false positives, while the
true positives are retained.

handles the false positive rate, q value is used to measure 
the false discovery rate (FDR). With a q value of 5%, one 
can obtain the significant features with a 5% FDR. This 
approach is implemented in the R statistics package 
known as q value. We used the q value package to calculate 
the significance of overrepresented TFBSs in terms of 
FDR.

Results and Discussion
Data source for analysis
We used the ORegAnno database, an open database for 
the curation of known regulatory elements from scientific 
literature, for choosing the cutoff of predicted TFBSs by 
TRANSFAC and RP score. Of the 251 TFBSs in this 
ORegAnno dataset, 210 records were found with known 
specific binding factor information. Of these, 145 can be 
found in the alignments of 2 kb upstream from the 
transcription start site. Finally, 95 TFBSs can also be found 
in the evolutionary conserved regions, which can be 
inferred using homologous alignments information of 
human, mouse, rat, chimpanzee, and dog sequences. 
Therefore, we used the 95 TFBSs that suited our conditions 
(Fig. 2).

Threshold dependency for TFBS prediction
For TFBS prediction, we used the TRANSFAC MATCH 
program, which uses a PWM. For human promoter 
prediction, we used a vertebrate matrix, and we selected 
the cutoff for minimizing false positives and predicting the 
exact ORegAnno true set, by applying 0.05 increment to 
the cutoff ranging from matrix similarity of 0.7 to 0.9 of 

matrix similarity score and from 0.75 to 0.95 of core 
similarity score in MATCH. Because little true negative 
information is available, here we studied the differences 
between true positives and false negatives. Using those 
cutoffs, we selected a cutoff of 0.85 and of core similarity 
of 0.90, having true positives of 80% and minimizing 
putative false positives (Fig. 3).

Regulatory potential score dependency for conserved 
regulatory element prediction
To decrease the false positive rate for predicted TFBSs, 
we chose a method for detection of conserved regulatory 
elements. This method calibrates the homology between 
the known regulatory region and the input promoter 
sequence of genes and shows the degree of similarity of 
conserved regulatory motifs by RP score.

We tried a performance test using the ORegAnno 
human 95 TFBS data with various thresholds. While the 
match threshold is increasing, the accuracy for motif 
discovery grows because of the deduction of the false 
positive prediction rate by high thresholds. As a result of 
validation using real set data, true positive values slowly 
change, and false positive values sharply decrease when 
applying 0.85 matrix similarity and 0.90 core similarity to 



Calibrating Thresholds to Improve the Detection Accuracy of Putative Transcription Factor Binding Sites 147

Fig. 4. Calibration test with varied conservation scores. We 
performed an accuracy test for the data with a threshold of 85%
with various conservation scores ranging from 0 to 0.1. The point
at which the RP score is zero showed the highest performance,
while on the other hand the rest showed poorer performance. At
that point, the average number of TFBSs is relatively minimized
while accuracy remained above 80%, and 78 were found to be 
true and 17 were not found.

Fig. 5. The average number of TFBSs. We calculated the average
number of TFBSs from 53 genes by applying various thresholds.
We chose the point of MATCH threshold as 0.85 and an RP 
threshold of zero for further analysis.

Table 1. Significantly overrepresented TFBSs in muscle tissue. 
Binding sites are selected with a less than a 5% false discovery 
rate. Of 16 overrepresented TFBSs, 14 are known muscle- 
specific regulators.

TFBS p value q value
LRF_Q2 5.32E–11 2.11E–08
MYOD_Q6 1.26E–07 1.23E–05
E12_Q6 1.27E–07 1.23E–05
MYOD_Q6_01 1.44E–07 1.23E–05
E2A_Q6 1.55E–07 1.23E–05
HEB_Q6 6.76E–07 4.46E–05
AP4_Q6 9.42E–07 5.04E–05
AP4_Q6_01 1.02E–06 5.04E–05
LBP1_Q6 2.89E–06 0.000127
MZF1_01 4.72E–06 0.000187
E47_01 3.56E–05 0.001283
VDR_Q3 4.95E–05 0.001632
LMO2COM_01 0.000191 0.005821
AP4_Q5 0.000466 0.013175
E2A_Q2 0.000519 0.013709
AP4_01 0.001449 0.035856

MATCH cutoff and RP scores.
Therefore, we applied the RP score to our system (Fig. 

3). We also conducted a test, increasing the regulatory 
score cutoff from 0 to 0.1. As a result, 78 true positives were 
detected, and there were 17 undetected TFBSs (Fig. 4). 
Detection accuracy increased to 80% when applying an 
RP score of 0. Therefore, the prediction method for 
conserved regulatory elements by applying RP score is an 
efficient method to minimize false positives.

We predicted an average of 2678 TFBSs in a promoter 
(Fig. 5). This is about 1.3 regulatory elements per base in 
the promoter region. Despite the high accuracy obtained 
with experimentally validated evidence, it is possible that 
a lot of noise exists in the processed data. These putative 
false positives may lead to confusing results and false 
discoveries. However, regardless of possibly false information, 
one can find the target TFBS of coexpressed genes using 
statistical methods. This statistical approach can tolerate 

up to 50% of overrepresented TFBSs of coexpressed 
genes (Ho Sui, Mortimer, Arenillas, Brumm, Walsh, 
Kennedy and Wasserman 2005). We applied a similar 
method to determine whether our data could produce 
robust detection of overrepresented TFBS.

Significantly overexpressed TFBSs in muscle tissue
We used muscle-specific genes derived from the T-STAG 
database to analyze tissue- or tumor-specific expression 
patterns in human and mouse transcriptomes. The 
statistical method was used to analyze 91 records. We 
applied Fisher’s exact test and q value to the submitted 
gene set. Through statistical analysis, we obtained 
overrepresented TFBSs (Table 1).

There are several well-known muscle-specific TFs. 
MyoD and mef-2 are the most prominent TFs related to 
muscle-specific gene expression (Fickett 1996). Additionally, 
SRF, TEF-1, and SP-1 were frequently mentioned as 
muscle-specific regulators in the previous studies (Wasserman 
and Fickett 1998).

Table 1 shows a similar result to previous studies; 16 
TFBSs were selected as overrepresented in muscle tissue 
with a q value of less than 0.05. We found that 14 of the 
16 TFBSs were known as muscle-specific regulators in 
previous studies. Well-known MyoD binding sites were 
ranked as high as second and fourth. The MYF binding 
profile, E2A_Q6, was also found at fifth place. MEF-2, 
SP-1, and TEF-1 were found at the 27th, 49th, and 55th 
places, with a p value less than 0.05 and relatively high q 
value ranging from 0.11 to 0.34 (data not shown). However, 
the SRF binding profile turned out to be insignificant in this 
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Table 2. Significantly overrepresented TFBS combinations in 
muscle tissue. Because of the huge amount of data, only the 
top 40 results are displayed. The known muscle‐‐specific 
combination E2F‐‐SP1 is ranked 35th.

Combination p value q value
AP2ALPHA_01 E2F_Q2 0 0
PAX2_02 TBP_Q6 3.1E–302 9.6E–298
AP2GAMMA_01 E2F_Q2 6.3E–301 1.3E–296
HNF3_Q6 TBP_Q6 7.1E–239 1.1E–234
HNF3_Q6 PAX2_02 9.5E–237 1.2E–232
FOXD3_01 PAX2_02 3.9E–236 4.1E–232
FOXD3_01 TBP_Q6 1.5E–223 1.4E–219
FOXJ2_01 PAX2_02 1.6E–220 1.3E–216
HFH3_01 TBP_Q6 2.5E–211 1.8E–207
HFH3_01 PAX2_02 2.8E–209 1.7E–205
HNF3_Q6_01 TBP_Q6 3.9E–208 2.2E–204
FOXJ2_01 TBP_Q6 1.9E–206 9.9E–203
FOXD3_01 HNF3_Q6 5.5E–183 2.6E–179
HNF3_Q6 HNF3_Q6_01 3.3E–182 1.5E–178
HNF3_Q6_01 PAX2_02 6.7E–179 2.7E–175
FAC1_01 PAX2_02 4.2E–178 1.6E–174
FAC1_01 TBP_Q6 3.9E–176 1.4E–172
HFH3_01 HNF3_Q6 1.3E–175 4.3E–172
HNF3ALPHA_Q6 TBP_Q6 8.2E–175 2.7E–171
LRF_Q2 LRF_Q2 1.4E–170 4.4E–167
FOXD3_01 HNF3_Q6_01 2.8E–168 8.1E–165
FOXJ2_01 HNF3_Q6 1.9E–160 5.5E–157
FOXD3_01 HFH3_01 1.2E–156 3.3E–153
HFH3_01 HNF3_Q6_01 3.5E–155 9E–152
E2F_Q2 E2F_Q2 4.9E–155 1.2E–151
HNF3ALPHA_Q6 PAX2_02 1.1E–149 2.6E–146
FOXJ2_01 HNF3_Q6_01 1.7E–147 3.8E–144
E2F_Q2 ETF_Q6 1.5E–143 3.3E–140
TBP_Q6 TBP_Q6 2E–143 4.2E–140
FOXD3_01 HNF3ALPHA_Q6 3.4E–143 7E–140
HNF3ALPHA_Q6 HNF3_Q6 7.1E–143 1.4E–139
FOXD3_01 FOXJ2_01 1.8E–140 3.4E–137
FAC1_01 FOXD3_01 1.3E–139 2.4E–136
FOXJ2_01 HFH3_01 1.5E–138 2.7E–135
E2F_Q2 SP1_01 2.7E–137 4.8E–134
FAC1_01 HNF3_Q6 4.3E–134 7.4E–131
FAC1_01 HNF3_Q6_01 8.6E–131 1.4E–127
LBP1_Q6 LRF_Q2 3.1E–130 5E–127
HNF3ALPHA_Q6 HNF3_Q6_01 2.3E–127 3.7E–124
HFH3_01 HNF3ALPHA_Q6 6.8E–127 1E–123

analysis because of the high p value.
E12 and E2A binding profiles are representative of E12 

and E47 target sequences. The splice variants of the E2A 
gene product, E12 and E47, are the binding partners of 
MyoD, which is a well-known muscle-specific regulator 
(Lingbeck, Trausch-Azar, Ciechanover and Schwartz 
2005). There have been reports that the biochemical 
interaction of pRb with a tal-1-E2A-Lmo2-Ldb1 tetramer 
complex is found in human adult proerythroblasts and 

erythroblasts (Vitelli, Condorelli, Lulli, Hoang, Luchetti, 
Croce and Peschle 2000). The Lmo2 target sequence 
profile LMO2COM_01 is ranked 13th with q value 0.0058. 
Also, HEB has a functional role of regulating gene expression 
in the development of skeletal muscle (Conway, Pin, 
Kiernan and Merrifield 2004).

In a previous study, AP4 was reported to have specific 
function in human myocardial tissue (Westhoff, Jankowski, 
Schmidt, Luo, Giebing, Schluter, Tepel, Zidek and van der 
Giet 2003). Moreover, a polymorphism of VDR affects 
muscle function (Pfeifer, Begerow and Minne 2002), and 
Pbx-Meis1/Prep1 binds DNA with heterodimers of E2A 
and MyoD, myogenin, and Mrf-4 or Myf-5 (Knoepfler, 
Bergstrom, Uetsuki, Dac-Korytko, Sun, Wright, Tapscott 
and Kamps 1999). Despite the possible false discoveries 
in our TFBS prediction, our calibrated data showed good 
performance, finding 14 of 16 overrepresented TFBSs with 
a less than 5% FDR.

Detecting TFBS combinations
In higher organisms, multiple TFs are involved in 
transcriptional regulation. In the analysis above, we found 
significantly overrepresented TFBSs in muscle tissue. 
Using a combinatorial approach, we tested our data for 
possible TFBS combinations. We performed a  test 
instead of Fisher’s exact test on the muscle-specific gene 
set, owing to the extreme values of the sample size of total 
TFBS combinations found in the genome. However, the 
 test might not be very accurate if the margin is very 
uneven or if there is a small value in one of the cells in the 
contingency table. Therefore, the statistical data from this 
analysis may be confusing because of the possible errors 
in the approximation.

Table 2 lists the combination results sorted by statistical 
significance. There are an estimated 67,958 TFBS combinations 
in the muscle gene set. With a q value result less than 0.05, 
we found that 13,845 of 67,958 TFBS combinations are 
statistically significant. Because of the large amount of 
analysis and possible errors in estimation, we empirically 
selected the top 40 combinations from the results.

E2F and SP1 are reported to have direct interaction in 
muscle tissue (Guo, Degnin, Fiddler, Stauffer and Thayer 
2003). We found that the predicted E2F and SP1 

combination ranked 35th. E2F and GATA6 are reported as 
important regulators of glomerular mesangial cells 
(Morrisey 2000). The E2F and GATA6 combination ranked 
59th (data not shown). Known transcription factor 
interactions also followed. E2A and MyoD in 183rd, E12 and 
LMO2 in 330th, and HEB and MyoD ranked 772nd. Other 
tissue-specific combinations have been found to have a 
high rank. The AP-2 and E2F combination is ranked in first 
and third place. It is reported that the E2F-AP-2 complex 
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may cooperate with c-Myc and -tocopherol in neuronal 
cells (Dottori, Gross, Labosky and Goulding 2001). FOXJ2 
and PAX2 have an interaction in the eye (Yu, Lin, Zack and 
Qian 2006), and is ranked 8th.

Web implementation
We partially applied this method for the analysis of TFBS 
information; the detection of overrepresented TFBSs has 
been implemented in a user-friendly website (http://www.ngri.go.kr/ 
cmams/CREAT/index.html). Because of the lack of 
computational power of our web server, we excluded the 
combinatorial module. Reference ID, gene ID, and gene 
symbol are allowed as inputs for module analysis. Users 
may input genes into a text box as part of the analysis 
program. Through the website, we offer conserved regulatory 
motif information. The program is implemented in Perl script 
(http://www.perl.com) and R language (http://www.bioconductor.org), 
and uses MySQL (http://www.mysql.com) as a database. 
The program is wrapped by Perl script to maintain a 
user-friendly web interface.

Conclusions and Discussion
We used the TRANSFAC MATCH program to predict 
human TFBSs and used the RP score to identify conserved 
regulatory elements. For the MATCH program and RP 
score cutoff decision, we selected cutoff values whose true 
positive values were not changed and whose false positive 
values decreased sharply. We developed the cREAT 
system by applying those cutoffs.

We also validated the running result of the cREAT 
system using muscle-specific genes of the T-STAG 
database. As a result, 14 of 16 were predicted TFs by 
cREAT, previously reported as muscle-specific TFs in the 
literature.

We also analyzed combinatorial TFBSs commonly 
affecting gene expression. The combinatorial approach of 
multiple TFs has been addressed in a considerable 
number of previous studies. Enriched regulatory module 
analysis of a set of potentially coregulated genes, 
combination analysis of evolutionarily conserved regulatory 
elements, and robust cis-regulatory module analysis using 
biological information have been introduced and applied 
to identify regulatory networks and pathways (Cohen, 
Klingenhoff, Boucherot, Nitsche, Henger, Brunner, 
Schmid, Merkle, Saleem, Koller, Werner, Grone, Nelson 
and Kretzler 2006). We were able to find known 
combinatorial units in the muscle-specific gene sets. The 
enrichment analysis implied that data filtered by the 
calibrating thresholds are robust and that true positives are 
detected while the number of possible false positives is 

reduced.
Compared with the previously introduced study, this 

analysis offers researchers relevant threshold and filtered 
putative TFBS information. First, we adopted a regulatory 
potential score, which is a specialized measurement of 
potentially conserved regulatory elements. Second, we 
calibrated the thresholds in the analysis of TFBS detection 
and conserved elements with a varied range of thresholds. 
Finally, we found the relevant thresholds to provide robust 
detection. We compared the proportion of the difference 
between the true dataset and the predicted dataset. Next, 
we validated our result with well-known muscle-specific 
gene sets from T-STAG. This approach will be very helpful 
to biologists confronted with finding putative TFBSs and 
filtering reliable TFBSs with specific thresholds.
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