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A Method of Determining the Scale Parameter for
Robust Supervised Multilayer Perceptrons

Ro Jin PakV

Abstract

Lee, et al. (1999) proposed a unique but universal robust objective func-
tion replacing the square objective function for the radial basis function
network, and demonstrated some advantages. In this article, the robust ob-
jective function in Lee, et al. (1999) is adapted for a multilayer perceptron
(MLP). The shape of the robust objective function is formed by the scale pa-
rameter. Another method of determining a proper value of that parameter
is proposed.
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1. Introduction

There exist many types of feedforward neural networks in the literature, for example,
multilayer perceptron (MLP), a radial basis function (RBF) network (Saha, et al., 1993) ,
etc. The MLP model has unknown parameters, often called weights, and we seek values
for them that make the model fit the training data well. In order to get proper weights,
the standard back propagation (BP) algorithm is the most common learning algorithm
for an MLP. The basic idea of BP algorithm is based on the least mean squares (LMS)
method which is intended to optimize the fit of a model with respect to the training data
by minimizing the square of residuals (Hecht-Nielsen, 1990). The use of LMS for data
modeling can be dated back to Gauss and Legnedre (Hampel, et al., 1986).

Suppose a data set contains outliers, an MLP obtained by the use of the LMS method
often becomes inaccurate. To remedy this problem, the error function is replaced by a
function which is symmetric and continuous whose influence function is of bound func-
tions (Liano, 1996).

Let us consider an MLP with one output unit y. The goal of a learning algorithm is
to minimize a cost function of the form

1 P
E= P ZP(TP)’
p=1
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where the error function p(-) is symmetric and continuous, r; = t; — y; is the residual of
pattern ¢ with target ¢, and P is the number of training patterns. The LMS method by
setting the error function in combining robust estimation (Hampel, et al., 1986) turns
out very effective in improving the performance of MLP model (Liano, 1996). Later, Lee,
et al. (1999) proposed the objective function driven from robust statistics (Chen and
Jain, 1994), which is a class of robust object functions with the form given as follows:

Er(rp) = Y _[8(rp) — 6(0)],

where ¢(rp) is a continuous function, ¢(0) is a constant, and P is the total number
of inputs. Note that Egr(r,) becomes the least squares criterion when ¢(rp) = rg and
#(0) = 0. Lee et al. (1999) let the derivative function ¥(r) = dé(r)/dr be ¥(r) = s(r)t(r)
with the six necessary properties about s(r) and ¢(r) (details in Lee, et al., 1999, p. 678).
Lee, et al. (1999) proposed a robust objective function step by step starting with

W(r) = s(r)t(r) =777 /%,
Next, the derivative of ¢(r) is calculated as

dy(r)/dr = e /2 _ (7“2/0)13—T2/2‘7

=(1- 7‘2/0’)6_7‘2/26‘

Setting dy)(r)/dr = 0 yields two extreme points of 1(r), ¢/2, one in 7 > 0, and the
other in 7 < 0 which can be chosen to be two cutoff points of ¥(r). The confidence
interval of the residual is [-o'/2,5'/2]. Also

#(r) = /Te_rz/%d'l‘ = _ge "%
Finally, the corresponding robust objective function is therefore obtained as

Eg(r) = ¢(r) — ¢(0) = a(1 — 77 /%), 1.1)

The RBF network which is considered as a good candidate for approximation prob-
lems because of its faster learning capability compared with other feedforward network.
In traditional RBF networks, the Gaussian function and the least squares criterion are
selected as the activation function of network and the objective functions, respectively.
Lee, et al. (1999) demonstrated that the radial basis function (RBF) network with Eg(r)
in (1.1) as an objective function has the advantages over the ordinary RBF (Moody and
Darken, 1989), which are 1) better capability; 2) faster learning speed; 3) better size of
the network; 4) higher robustness to outliers.

In this article, we borrow the objective function Eg(r) for training the traditional
MLP and try to find out the way of determining a proper value of o. The parameter o
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in (1.1) can be replaced by o2 for computational convenience from the statistical point
of view, then from now on

Eg(r) = ¢(r) — ¢(0) = a(1 — ™" /%), (1.2)

‘Throughout this article, Er(r) in (1.2) will be used as an objective function.
Researchers have not been very much interested in the value of the scale parameter,
the scale parameter is usually predetermined. The main purpose of this article is to show

the method of determining a proper value of the scale parameter, which is derived from
the data.

2. Updating Sigma : Methods and Simulations

The algorithm described in this section is based on the gradient descent method
which provides update rules for the parameter o. The proposed learning rule about o
can be written as

OER(r
o(t+1) = o)) +n TR,
P
= U(t) + n 2[2(1 - e—$g/20'2)0. — z?)(ezi/2azg)_1]|a=a(t), (21)
p=1

where 7 is a learning rate. In order to see how the parameter ¢ is updated, an example,
so called the T-C problem, is considered. The T-C problem is a fairly simple pattern
recognition problem. We wish to train a network to distinguish between the letters T
and C, independent of the angle of rotation of these letters. We shall restrict the rotation
angles to multiples of 90 degrees, resulting in four possible inputs for each letter, as shown
in Figure 2.1. We choose to represent the letter T by an output value of 0.1, and the letter
C by an output value of 0.9. For more detail about the T-C problem, refer (Freeman,
1994). The same network scheme in (Freeman, 1994) is employed for simulations: The
three-layer back propagation network with nine input nodes, one hidden layer with three
nodes, one output node and the sigmoid function for an activation function.
We consider three types of MLP;

1. (ordinary) MLP: MLP with Er(r) = r?/2.

2. MLP with a fixed sigma: MLP with Er(r) in (1.2), where o is fixed. (1.65 is used
in this case; 1.65 is the 95" percentile of the standard normal distribution.)

3. MLP with sigma-updates: MLP with Egr(r) in (1.2), where o is updated as in
(2.1).

The network is trained with n = 0.2,1.0 and 2.0, respectively, for 2000 iterations
(epochs). The training is carried out 500 times with two types of input features: (1)
uncontaminated patterns; (2) contaminated patterns with the replacement of the first
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Figure 2.1: This figure shows the data-representation scheme for the T-C prob-
lem. Each letter is superimposed on a 3 by 3 grid. Filled grid-squares are rep-

resented by the real number 0.9, and empty ones are represented by 0.1. Each
input vector consists of nine real numbers.

input pattern (0.9, 0.9, 0.9, 0.1, 0.9, 0.1, 0.1, 0.9, 0.1) by (9, 9, 9, 1, 9, 1, 1, 9, 1).
Representative results are displayed in Figure 2.2 and Figure 2.3. The error measure is
the average of 500 squares of simulated errors at each iteration from 1 to 2000. Some
important discoveries from the simulations are listed as follows:

e Effect of updating the sigma [Figure 2.2]: It is clear that the error measures of the

MLP with sigma-updates are more stable than an ordinary MLP and the MLP
with fixed sigma being 1.65. In fact, there is no difference in performance between
the MLP and the MLP with a fixed sigma.

Learning rate [Figure 2.3-(a), (b) and (c)]: The learning rate is another key factor
for the performance of MLP with sigma-updates. The larger the learning rate, the
faster the error measure diminishes.

Choice of the sigma [Figure 2.3-(d)}: The performance of the MLP with an inap-
poriately fixed sigma may become very poor. In our case, 6=0.02, which is very
small.

Convergence of the sigma-update [Figure 2.3-(e), (f)]: The sigma is approaching
to 1.5515 (1.3716), 1.6589 (1.4731) and 1.7503 (1.6036) for n = 0.2,1.0 and 2.0,
respectively. The numbers are the medians of 500 sigma-updates at each iteration
based on contaminated and uncontaminated patterns (numbers in parentheses are
of uncontaminated patterns). In practice, such a limiting value of sigma-updates
for a given input patterns would be used for validation and test.
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Figure 2.2: Error measure vs. Iteration number: n = 2.0

Another realistic example considered; Iris data with 150 random samples of flowers
from the iris species setosa, versicolor, and virginica. From each species there are 50
observations for sepal length, sepal width, petal length, and petal width in cm. A MLP
with 5 hidden layers, is trained 2000 times with n = 0.2, 1.0 and 20. Figure 2.4 shows
the traces of the estimates of & which approaching to about 1.2114, 1.2109 and 1.2103
for n = 2.0(upper curve), n = 1.0(middle curve)and n = 0.2(lower curve), respectively.

3. Comments and Conclusions

Before closing this article, we would like to mention that there is a chance for the
sigma to diverge. Finding the limiting value of sigma-updates in (2.1) is to start with an
arbitrary element ¢(1) in o and to define an iterative sequence by o(t+1) = 9()|o=0o(2),

where
OERg(rp)

9(o) =0 +n—p_
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Figure 2.3: Error measure vs. Iteration number - (a) n = 0.2, contaminated,
MLP with sigma-update; (b) n = 1.0, contaminated patterns, MLP with sigma-
update; (c) 7 = 2.0, contaminated patterns, MLP with sigma-update; (d) n = 1.0,
uncontaminated patterns, MLP with fixed o = 0.02: sigma vs. Iteration number
- () uncontaminated patterns, (f) contaminated patterns with n = 2.0(upper
curve), 7 = 1.0(middle curve), n = 0.2(lower curve)

If this sequence converges, then its limit is called a fixed point of g(c). If there exists
L, called the Lipschitz constant such as |¢’(¢)] < L < 1 on certain interval ! C R, then
there exits a fixed point on that interval [ (Andrzej and Dugundji, 2003). In this case

P
2 2
g’(a’) = 1 + 772{2(1 — 6_12/202) _ xg/(0_26$127/2¢72) _ z;1’/(0_46.21,/2(7 )},
p=1

and a particular |¢’(c)| against o is in Figure 3-1. There exists an intervals near small
o where the |¢’(o)| is bounded by the L < 1, but for the very large o the upper bound
L is in fact 1 [Figure 3.1-(a)], which means that it is not always possible to find such
an interval /| C R on which the upper bound L < 1. That is, if any sigma-update
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Figure 2.4: Sigma vs. Iteration number-Iris data with n = 2.0(upper curve),
n = 1.0(middle curve), n = 0.2(lower curve)
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Figure 3.1: A form of |¢/(0)| with n = 1.0, P = 1,z = 5; Learning with
contaminated patterns with miscoded target values
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happens to be very large in any event, there is a chance for the sigma-updates not to
converge to a fixed value. However, the performance of the MLP with sigma-updates
won’t be worse than that of the ordinary MLP, because Er(r) — r2/2 as ¢ — co. In
order to see the case where sigma-updates are diverging, we run 500 simulations with
the contaminated patterns such as 20% of 2000 target values 0.1 and 0.9 are replaced by
1 and 9, respectively. The error measures are plotted against iteration numbers up to
2000 for the ordinary MLP, the MLP with sigma-updates and the MLP with fixed sigma.
being 1.65 [Figure 3.1-(c), (d) and (e)]. All of the three plots show unstable patterns.
Figure 3.1-(b) displays a trace of sigma-updates which keep on increasing.

We propose to update the sigma in the same manner as the weights are updated,
and then we would like to conclude that the learning by the proposed method produces
more stable result than the ordinary MLP. Though there is still a chance of divergence
of the sigma-updates, performance of the proposed learning method is not worse than
that by the ordinary learning method based on the least squares criterion.
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