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Moments of a Class of Internally Truncated Normal
Distributions

Hea-Jung Kim?b

Abstract

Moment expressions are derived for the internally truncated normal dis-
tributions commonly applied to screening and constrained problems. They
are obtained from using a recursive relation between the moments of the nor-
mal distribution whose distribution is truncated in its internal part. Closed
form formulae for the moments can be presented up to N** order under
the internally truncated case. Necessary theories and two applications are
provided.
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1. Introduction

The internally truncated normal distribution with parameters (u, o) is defined as the
distribution of X = [Y|Y < a,Y > ], where Y ~ N(u,0?) and the internal truncation
points o and # (& < 3). The probability density function of X is

f(x)=a-1¢<‘”%“) {1_q><ﬂf:“>+q><°‘_“)}_l, z<a,z>p, (11

g

where ®(-) and ¢(-) denote the c.d.f. and p.d.f. of the standard normal variable, respec-
tively. The degree of truncation is ®((8 — p)/o) — ®((a — p)/0) (from inside).

The effects of truncation on modeling have long been recognized (see, for example,
DePriest, 1983) and are commonly referred to in the literatures of classic statistics such
as Johnson et al. (1994). Genton (2005) also notes that the internally truncated normal
distribution is useful for a selection model whose moments are directly related with those
of internally truncated normal distribution (see, Section 4.1).

One of the most common techniques for characterizing a truncated distribution is the
method of TMs (truncated moments). TMs are useful to providing descriptive informa-
tion about the distribution. In addition to their utility as general descriptive measures,
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moments are also employed for estimating parameters of the distribution. Sugiura and
Gomi (1985) have given Pearson diagrams (of the coefficients of skewness and kurtosis)
for the doubly truncated normal distributions. Shah and Jaiswal (1966) has discussed the
moments of doubly truncated normal distribution. Hall (1979) has also derived inverse
moments for a class of singly truncated normal distributions. For the other distributions,
Kim (2007) obtained moments for a truncated generalized-t and Jawitz (2004) derived
several expressions for TMs useful to numerical computation. These include TMs of nor-
mal, lognormal, Pearson type III, log Pearson type III and extreme value (Weibull and
Gumbel) distributions. See also Shah (1966) for the TMs of the binomial distribution.
Although TMs for several distributions have been studied and applied in the literature,
we are not aware of any detailed exposition of TMs for the internally truncated normal
distribution. This lack of detailed exposition motivates the investigation described in
this article.

2. Preliminaries

Prior to derive the TMs, we provide lemmas useful for calculating them. For nota-
tional convenience, we use T'N(, g)(u, 0?) to indicate a doubly truncated normal distri-
bution with the lower and upper truncation points « and 3, respectively; the degrees of
truncation are ®((a — p)/0) (from below) and 1 — ®((8 — p)/o) (from above). So that
[Ylae <Y < f] ~ TN(q,g)(p,0), where Y ~ N(u,0?). We also use TN\ (a,5)(1,02) to
denote a internally truncated normal distribution whose p.d.f. is (1.1).

Lemma 2.1 Let X ~ TNg\(a,p)(1,0%). Then the distribution of (X — p)/o is
T Ng\(a,5)(0,1), where a = (o — p) /o and b= (8 — p)/o.

Proof: By definition, X = [Y|Y < «,Y > (3], where Y ~ N(u,0?). Thus

(X —p)fo =Y -w)/o| (Y —p)/o<a, (Y —u)/o > b, (2.1)

where (Y — pu)/o ~ N(0,1). , O

Note that the distribution T'Ng\(a,g)(, 0?) strictly includes the singly truncated
normal distributions. If a = —oco (or 8 = o), the T'NR\(a,3) (1, 0%) distribution reduces
t0 T'N(3,00) (14, 62) (or distribution TN(_ e, a)(1, 52)), the left (or right) truncated normal
with lower (or upper) truncation point 3 (or «).

Lemma 2.2 If X ~ TNg\(a,5)(1;5°), the moment generating function of X distri-

bution is b
ettt /2 P(—b + ot) + B(a — at)}
B(—b) + ®(a)

where a = (o — p)/o and b= (8 — p)/o.

Mx(t) = , teR, (2.2)
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Proof:

Mx(t) = {®(=b) + ®(a)}~ {/; §¢ (“’;“) dx+/: §¢ (x;“) dx}

= 5% {/_a ot (u(x)) dx + /[:o a”1¢(u(x))d$} ;

oo

where u(z) = {z — (1 + 02t)}/o. A direct integration using the change of variable, i.e.
z={z — (u + o%t)}/o, gives result. o

3. The Moments

As implied by Lemma, 2.1, it is sufficient to compute the moments of Z = (X — u)/o
for those of X ~ TNg\(, g)(1t,0°), where Z ~ TNg\(a,(0,1), a = (a — x)/o, and
b= (8 — pu)/o. The relationship between X and Z is

X =p+oZ (3.1)
From (1.1), we see that Z has the density
fz(2) = [®(-b) + ®(a)] " 'é(2), z2<a,z>b. (3.2)
The moment generating function of Z is

o2 180+ 1) + B(a— 1))

Mz(t) = B(-b) 1 Ba)

teR (3.3)

by Lemma 2.2. Naturally, the moments of Z can be obtained by using the moment
generating function differentiation. For example

: $(b) — ¢(a)
EZ = M,(t)|t=0 = ——"~. 3.4
2(®)l=o B(—b) + ®(a) (3.4)
Unfortunately, for higher moments this rapidly becomes tedious.
An alternative procedure, making use of the following theorem, gives a simple way
of calculating the moments.

Theorem 3.1 If Z ~ T Ng\(q, )(0,1), then, for £ =1,2,...,

¥ 9(b) - o~ $(a)

Bl7] = (- DBz + —r

(3.5)

Proof: We see that

21 (2)

y = (k+1)2"¢(2) — 2**2¢(2) for k= —1,0,1,2,....
z
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This gives

b
M, = / {(k+1)2* - zk+2} #(2)dz/(®(=b) + ®(a))
= (0"116(b) — a* ' ¢(a))/(B(-D) + ®(a))

for k = —1,0,1,2,.... Therefore,

El(k+1)Z*| - E[Z**?] = /R o {(k +1)2* - 2F+2} ¢(2)dz/(2(-b) + B(a))

= {(k+ DE U] - E[U***]} /(B(=b) + ®(a)) - M;,

where U is a N(0,1) variable and (k + 1)E [U*] — E [U**2] = 0. Setting £ = k + 2, we
have the result. g

The following corollary is straightforward from the proof of Theorem 3.1.

Corollary 3.1 LetV ~ TN(a)(0,1), a doubly truncated standard normal with the
lower and upper points a and b, respectively. Then

a~1g(a) = b=14(0)

E[V]=(@-1)E[V©? + OE0)

L 0=1,2,.... (3.6)

The expression (3.6) is different from those given in Johnson et al. (1994) and Jawitz
(2004), and hence can be taken as an alternative method for calculating the moments of
the doubly truncated normal distribution.

Corollary 3.2 Let U ~ N(0,1), V ~ TN(,(0,1), and Z ~ T Ng\(a, 5)(0,1). Then
E U] ={®(b) - ®(a)}E [V!] + {®(-b) + B(a)}E[Z27], £=1,2,..., (3.7)
where E[U*] = €1 274/2/(¢/2)! for even £ and E[U*] = 0 for odd £.

Proof: The statement is equivalent to

=] b
th(u)du = Ep(v)dv + Lo(2)dz.
/ u*d(u)du /a v (v)dv /R\(a’ ) 2°¢(2)dz

—0o0

The moment E[U?] is given in Johnson et al. (1994, p. 89). O

Therefore, if we obtain the moments of Z (or V) distribution, those of Z (or V)
distribution can be calculated from the relation (3.7). The equation (3.5) gives a recursive
method for evaluating the moments of Z ~ T'Ng\(q, 5)(0,1). By setting £ =1,2,3,4, we
obtain expressions up to the fourth moments of Z ~ T'Ng\ (4, »(0,1).
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One finds the moments,

Bz - 40— 0(a)

o O(-b) + ®(a)’
_ . bg(b) —adla) [ () —¢(a) \?
V) = 14 3 1 9(a) (@(—b) +<1>(a)) ’

Skewness(Z) = y3/? {B2— Bo(1+3B8L—260)},
Kurtosis(Z) = v72 {3(1 + B1) + B3 — Bo(4B2 — 66180 + 260 + 363)}
where 8, = {b*¢(b) — a’¢(a)}/{®(—=b) + ®(a)}, £=0,1,2,3, and v = 1 + 1 — BZ.

Using the relationship (3.1), we have the following result. Denoting EZ¢ by A.(a, b),
one then has the general formula of the moments of X ~ T'N(, g)(1, 0%) given by

EXt = é (j) p=Ia9xi(a, b) (3.8)

=0

and Var(X) = o?Var(Z), where a = (oo — p)/o, b = (8 — p)/o. Further note that the
skewness (the third standardized central moment) and kurtosis of X and Z distributions
are the same.

As for an example, we use the half-normal distribution, written by T Ngy (—oc, 0)(0, 1)-
If Z ~ TNr\(~c0, 0)(0,1), the p.d.f. in (1.1) reduces to

fz(2) =2¢4(2), z>0. (3.9)

One finds the moments

E[Z] = 2/,
Var(Z) = 1~2/m,
Skewness(Z) = (4/m —1)(2/m)?(1 — 2/m)~3/2,
) =

Kurtosis(Z) = (1 —2/m)"%(3 — 4/7 — 12/7°).

These four values of Z agree with those of the half-normal distribution given in
Sugiura and Gomi (1985).

4. Applications

4.1. Sum of the normal and internally truncated normals

Let Y = (Y1,Y2)" be a bivariate standard normal with correlation coefficient p.
Under the distribution of Y, suppose that the distribution of Y; is internally truncated.
So that the random variable Y, is truncated in the form of Y5 < a and Y3 > b, where a
and b (a < b) are truncation points. Then it is straightforward to see that the marginal
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density of Y] is the same as that of W = [Y1|Y2 < a,Y> > b]. The density given by
Genton (2005) is

@ (—(b—pw)/VI= ) + @ ((a - pu)/VT=7) .

T eR.  (41)

f(w) = ¢(w)
Our problem is to obtain the moments of the conditional distribution, i.e. E[W¥],
k =1,2,.... Naturally, the moments of W can be obtained by using the moment gener-
ating function differentiation. Unfortunately this needs tedious analytic calculation. We
describe a simple alternative procedure as follows.
It is well known that the bivariate standard normal variables can be expressed in
terms of two independent standard normals U and V:

Y=V and Y] = pV + /1 — p2U. (4.2)

This in turn gives following result. Since U and V are independent, by using (4.2), we
can express W = [Y;|Y; < a,Y2 > b] as

W = pW\(a, 5 + V1 - p?U, (4.3)
where Vg\(q, 5) ~ T'NR\(a, )(0,1). This representation of W immediately gives

k
B =3 (461 - -0 B12 B0, (4.4

£=0
where Z = Vg\(a, 5) ~ T'NR\(q, 5)(0, 1). Denoting E[Z*] and E[U*~¢] by respective values
in Theorem 3.1 and Corollary 3.2, one then evaluate E[Wk], k=1,2,.... For example,
one finds moments,

_ ¢(b) —¢(a)
= P3(=b) + @(a)’

1.2 )00 —adla) [ 4() - ¢(a) )
VorltW) =1te {@(—b)+<1>(a) -(shraw) }

EW]

4.2. An inequality constrained regression

With the normal linear regression model, we assume that an n x 1 vector of obser-
vations y on our dependent variable satisfies

y=X60+c¢, (4.5)

where € ~ Ny(0,02]) with known 02, X : n x k, and rank(X) = k for the regression
model. Under the model, let 8 = (XTX)~ !XTy and M = (y — X78)”(y — X78). Then
the joint p.d.f. for the elements of y given X and @ is

f(y| X,8) < s~ exp {—T;[M +(0-6)"XTX(0 - é)]} . (4.6)



Moments of a Class of Internally Truncated Normal Distributions 685

For a possibly improper diffuse prior p(8) o q(8), the posterior distribution posterior
p.d.f. for the elements of @ is proportional to the product of a multivariate normal p.d.f.

and ¢(0) :
T T 5
p(0] Y, X) < exp {—(0 R } (0). (4.7)

When, in priori, an inequality constraint for a regression coefficient 6; is given in the
form of (6; < «,8; > (8), where a and 3 are known. We can define ¢(0) as I(6; <
a,0; > (), where I(-) is an indicator function. By integrating (4.7) with respect to

61,02,...,0;_1,0;41,...,0;, we have the marginal posterior p.d.f. of 8;
‘ (6; —6,)?
P(8;1y, X) ox exp =t 0 1(0; < 2,05 > ), (4.8)

the kernel of an internally truncated normal p.d.f., where h'7 is the (j,j) element of
(XTX)~'. Thus the marginal posterior distribution of ; is

051y, X ~ TNg\(a, 5 (05, 0%h?). (4.9)
Under the quadratic loss function, the Bayes estimator of 6; is

o VRIi {¢(b) — ¢(a)}
®(-b) + ®(a)

by (3.8), where a = (& — 8,)/(cvhi7 ) and b = (8 — 0,)/(cv/hi7 ). Note that the
estimator has following properties: (i) when |a| > |b] (a < b), 8, Bayes > 8;; (ii) when
la| = b (a < b), 65 Bayes = 0; (iil) when |a| < b (a < b), OAj,Bayes < ;.

éj,Bayes = éj =+ (4.10)

5. Concluding Remarks

Sometimes, observed data sets are almost exclusively truncated, because of analytical
detection limits or spatial and temporal limitations on data collection. In order to analyze
the data sets, some broadly related proposals and results have appeared in the literature
under the concept of the truncated distribution. In the same line, the present paper
has considered the moments of an internally truncated normal distribution, providing
descriptive information about the distribution of internally truncated data sets. We
see that the interest of TMs comes from both theoretical and applied directions. On
the theoretical side, they have utility as general descriptive measures of the internally
truncated normal distribution. In the applied view point, the moments can be employed
for solving statistically constrained problems as given in Section 4.
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