Mouse Strain-Dependent Osteoclastogenesis in Response to Lipopolysaccharide

  • Choi, Ho-Gil (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry) ;
  • Kim, Jin-Moon (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry) ;
  • Kim, Bong-Ju (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry) ;
  • Yoo, Yun-Jung (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry) ;
  • Cha, Jeong-Heon (Department of Oral Biology, BK21 project, Oral Science Research Center, Yonsei University College of Dentistry)
  • Published : 2007.12.31

Abstract

Bacterial lipopolysaccharide (LPS) is a potent stimulator of bone resorption in periodontitis. Co-culture systems of mouse calvaria-derived osteoblasts and bone marrow-derived preosteoclasts were used as an in vitro osteoclast differentiation. This study revealed that co-cultures using ddY or ICR mouse strain responded differently to LPS while responded equally to $1{\alpha},25(OH)_2D_3$. Thus, the different response to LPS indicates dissimilarity of two mouse stains in their capacity for generating osteoclasts while the two mouse strains share the similarity in response to $1{\alpha},25(OH)_2D_3$. To identify which cells between osteoblasts and preosteoclasts in the co-culture are responsible for the dissimilarity, the reciprocal co-cultures were performed between ddY and ICR mouse strains. The treatment of $1,25(OH)_2D_3$ to ddY/ICR (osteoblasts from ddY/preosteoclasts from ICR) and ICR/ddY reciprocal co-cultures also showed the similarity. In case of LPS treatment, the results of ddY/ICR were similar to ddY/ddY and the results of the other reciprocal co-culture, ICR/ddY combination, were consistent with those of ICR/ICR. It suggests that the dissimilarity between the two mouse strains may resident in osteoblasts but not in preosteoclasts. Therefore, the osteoblast is responsible for mouse strain-dependent osteoclastogenesis in response to LPS. Although mouse models will continue to provide insights into molecular mechanisms of osteoclastogenesis, caution should be exercised when using different mouse strains, especially ddY and ICR strains as models for osteoclast differentiation.

Keywords

References

  1. Chen, L.L. and J. Yan. 2001. Porphyromonas gingivalis lipopolysaccharide activated bone resorption of osteoclasts by inducing IL-1, TNF, and PGE. Acta. Pharmacol. Sin. 22, 614-618
  2. Cheng, J., B. Liu, D.A. Bastin, W. Han, L. Wang, and L. Feng. 2007. Genetic characterization of the Escherichia coli O66 antigen and functional identification of its wzy gene. J. Microbiol. 45, 69-74
  3. Chiang, C.Y., E. Fu, E.C. Shen, and H.C. Chiu. 2003. Effects of CD14 receptors on tissue reactions induced by local injection of two Gram-negative bacterial lipopolysaccharides. J. Periodontal. Res. 38, 36-43 https://doi.org/10.1034/j.1600-0765.2003.01617.x
  4. Chung, Y.H., E.J. Chang, S.J. Kim, H.H. Kim, H.M. Kim, S.B. Lee, and J.S. Ko. 2006. Lipopolysaccharide from Prevotella nigrescens stimulates osteoclastogenesis in cocultures of bone marrow mononuclear cells and primary osteoblasts. J. Periodontal. Res. 41, 288-296 https://doi.org/10.1111/j.1600-0765.2006.00876.x
  5. Hofbauer, L.C., S. Khosla, C.R. Dunstan, D.L. Lacey, W.J. Boyle, and B.L. Riggs. 2000. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J. Bone Miner. Res. 15, 2-12 https://doi.org/10.1359/jbmr.2000.15.1.2
  6. Hofbauer, L.C., D.L. Lacey, C.R. Dunstan, T.C. Spelsberg, B.L. Riggs, and S. Khosla. 1999. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 25, 255-259 https://doi.org/10.1016/S8756-3282(99)00162-3
  7. Hsu, H., D.L. Lacey, C.R. Dunstan, I. Solovyev, A. Colombero, E. Timms, H.L. Tan, G. Elliott, M.J. Kelley, I. Sarosi, L. Wang, X.Z. Xia, R. Elliott, L. Chiu, T. Black, S. Scully, C. Capparelli, S. Morony, G. Shimamoto, M.B. Bass, and W.J. Boyle. 1999. Tumor necrosis factor receptor family member rank mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc. Natl. Acad. Sci. USA 96, 3540-3545
  8. Kang, K.H., J.A. Song, D.J. Shin, H.E. Choy, and Y. Hong. 2007. Identification of genes differentially expressed in Raw264.7 cells infected by Salmonella typhimurium using PCR method. J. Microbiol. 45, 29-33
  9. Kikuchi, T., T. Matsuguchi, N. Tsuboi, A. Mitani, S. Tanaka, M. Matsuoka, G. Yamamoto, T. Hishikawa, T. Noguchi, and Y. Yoshikai. 2001. Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via toll-like receptors. J. Immunol. 166, 3574-3579 https://doi.org/10.4049/jimmunol.166.5.3574
  10. Li, J., I. Sarosi, X.Q. Yan, S. Morony, C. Capparelli, H.L. Tan, S. McCabe, R. Elliott, S. Scully, G. Van, S. Kaufman, S.C. Juan, Y. Sun, J. Tarpley, L. Martin, K. Christensen, J. McCabe, P. Kostenuik, H. Hsu, F. Fletcher, C.R. Dunstan, D.L. Lacey, and W.J. Boyle. 2000. Rank is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566-1571
  11. Miyata, Y., H. Takeda, S. Kitano, and S. Hanazawa. 1997. Porphyromonas gingivalis lipopolysaccharide-stimulated bone resorption via CD14 is inhibited by broad-spectrum antibiotics. Infect. immun. 65, 3513-3519
  12. Rogers, J.E., F. Li, D.D. Coatney, C. Rossa, P. Bronson, J.M. Krieder, W.V. Giannobile, and K.L. Kirkwood. 2007. Actinobacillus actinomycetemcomitans lipopolysaccharide-mediated experimental bone loss model for aggressive periodontitis. J. Periodontol. 78, 550-558 https://doi.org/10.1902/jop.2007.060321
  13. Sakuma, Y., K. Tanaka, M. Suda, Y. Komatsu, A. Yasoda, M. Miura, A. Ozasa, S. Narumiya, Y. Sugimoto, A. Ichikawa, F. Ushikubi, and K. Nakao. 2000a. Impaired bone resorption by lipopolysaccharide in vivo in mice deficient in the prostaglandin E receptor EP4 subtype. Infect. Immun. 68, 6819-6825 https://doi.org/10.1128/IAI.68.12.6819-6825.2000
  14. Sakuma, Y., K. Tanaka, M. Suda, A. Yasoda, K. Natsui, I. Tanaka, F. Ushikubi, S. Narumiya, E. Segi, Y. Sugimoto, A. Ichikawa, and K. Nakao. 2000b. Crucial involvement of the EP4 subtype of prostaglandin E receptor in osteoclast formation by proinflammatory cytokines and lipopolysaccharide. J. Bone Miner. Res. 15, 218-227 https://doi.org/10.1359/jbmr.2000.15.2.218
  15. Schwartz, Z., J. Goultschin, D.D. Dean, and B.D. Boyan. 1997. Mechanisms of alveolar bone destruction in periodontitis. Periodontol. 2000 14, 158-172 https://doi.org/10.1111/j.1600-0757.1997.tb00196.x
  16. Sismey-Durrant, H.J. and R.M. Hopps. 1987. The effect of lipopolysaccharide from the oral bacterium Bacteroides gingivalis on osteoclastic resorption of sperm-whale dentine slices in vitro. Arch. Oral Biol. 32, 911-913 https://doi.org/10.1016/0003-9969(87)90106-3
  17. Suda, K., N. Udagawa, N. Sato, M. Takami, K. Itoh, J.T. Woo, N. Takahashi, and K. Nagai. 2004. Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide- induced osteoclast formation. J. Immunol. 172, 2504-2510 https://doi.org/10.4049/jimmunol.172.4.2504
  18. Suda, T., N. Takahashi, and T.J. Martin. 1992. Modulation of osteoclast differentiation. Endocr. Rev. 13, 66-80
  19. Takahashi, N., T. Akatsu, N. Udagawa, T. Sasaki, A. Yamaguchi, J.M. Moseley, T.J. Martin, and T. Suda. 1988. Osteoblastic cells are involved in osteoclast formation. Endocrinology 123, 2600-2602 https://doi.org/10.1210/endo-123-5-2600
  20. Takahashi, N., N. Udagawa, and T. Suda. 1999. A new member of tumor necrosis factor ligand family, ODF/OPGl/TRANCE/ RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256, 449-455 https://doi.org/10.1006/bbrc.1999.0252
  21. Walsh, M.C. and Y. Choi. 2003. Biology of the trance axis. Cytokine Growth Factor Rev. 14, 251-263 https://doi.org/10.1016/S1359-6101(03)00027-3
  22. Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, and T. Suda. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95, 3597-3602
  23. Zhuang, L., J.Y. Jung, E.W. Wang, P. Houlihan, L. Ramos, M. Pashia, and R.A. Chole. 2007. Pseudomonas aeruginosa lipopolysaccharide induces osteoclastogenesis through a toll-like receptor 4 mediated pathway in vitro and in vivo. Laryngoscope 117, 841-847 https://doi.org/10.1097/MLG.0b013e318033783a