Modulation of the Tendency Towards Inclusion Body Formation of Recombinant Protein by the Addition of Glucose in the araBAD Promoter System of Escherichia coli

  • Lee, You-Jin (Division of Food and Biotechnology, Chungju National University) ;
  • Jung, Kyung-Hwan (Division of Food and Biotechnology, Chungju National University)
  • Published : 2007.11.30

Abstract

We attempted to modulate the overall protein expression rate through the addition of a repressor against the araBAD promoter system of Escherichia coli, in which glucose was used as a repressor. Therefore, 0.5% L-arabinose was initially contained as an inducer in culture medium, and either 2% glucose or 2% glycerol was used as a carbon source, and it was found that the expression of recombinant interferon-${\alpha}$ could be observed at the beginning of the batch culture when glycerol was used as a carbon source. However, when glucose was used, the initiation of recombinant interferon-${\alpha}$ expression was delayed compared with that when glycerol was used. Furthermore, when the addition of 0.5% glucose was carried out once or twice after 0.5% L-arabinose induction during DO-stat fed-batch culture, the distributions of soluble and insoluble recombinant interferon-${\alpha}$ were modulated. When glucose was not added after the induction of L-arabinose, all of the expressed recombinant interferon-${\alpha}$ formed an inclusion body during the later half of culturing. However, when glucose was added after induction, the expressed recombinant interferon-${\alpha}$ did not all form an inclusion body, and about half of the total recombinant interferon-${\alpha}$ was expressed in a soluble form. It was deduced that the addition of glucose after the induction of L-arabinose might lower the cAMP level, and thus, CAP (catabolite activator protein) might not be activated. The transcription rate of recombinant interferon-${\alpha}$ in the araBAD promoter system might be delayed by the partial repression. This inhibition of the transcription rate probably resulted in more soluble interferon-${\alpha}$ expression caused by the reduction of the protein synthesis rate.

Keywords

References

  1. Bettenbrock, K., S. Fischer, A. Kremling, K. Jahreis, T. Sauter, and E.-D. Gilles. 2006. A quantitative approach to catabolite repression in Escherichia coli. J Bioi. Chern. 281: 2578-2584 https://doi.org/10.1074/jbc.M508090200
  2. Bostrom, M., K. Markland, A. M. Sanden, M. Hedhammar, S. Hober, and G Larsson. 2005. Effect of substrate feed rate on recombinant protein secretion, degradation and inclusion body formation in Escherichia coli. Appl. Microbial. Biotechnol. 68: 82-90 https://doi.org/10.1007/s00253-004-1855-4
  3. Gang, 1. B., H.-1. Chung, G-G Park, Y-S. Park, and S.-J. Choi. 2005. Stability and structural change of cAMP receptor protein at low and high cAMP concentrations. J Microbial. Biotechnol. 15: 1392-1396
  4. Gendron, R. P. and D. E. Sheppard. 1974. Mutations in the L-arabinose operon of Escherichia coli B/r that results in hypersensitivity to catabolite repression. J Bacterial. 117: 417-421
  5. Guzman, L.-M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacterial. 177: 4121-4130 https://doi.org/10.1128/jb.177.14.4121-4130.1995
  6. Hideaki, T., T. Inada, T. Kunimura, and H. Aiba. 1995. Glucose lowers $CRP^{star}$ levels resulting in repression of the lac operon in cells lacking cAMP. Mol. Microbial. 17: 251258
  7. Hoffmann, F., J. van den Heuvel, N. Zidek, and U. Rinas. 2004. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme Microb. Technol. 34: 235-241 https://doi.org/10.1016/j.enzmictec.2003.10.011
  8. Holtman, C. K., A. C. Pawlyk, N. D. Meadow, and D. W. Pettigrew. 2001. Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo. J Bacterial. 183: 3336-3344 https://doi.org/10.1128/JB.183.11.3336-3344.2001
  9. Ishizuka, H., A. Hanamura, T. Inada, and H. Aiba. 1994. Mechanism of the down-regulation of cAMP receptor protein by glucose in Escherichia coli: Role of autoregulation ofthe crp gene. EMBO J 13: 3077- 3082
  10. Ishizuka, H., A. Hanamura, T. Kunimura, and H. Aiba. 1993. A lowered concentration of cAMP receptor protein caused by glucose is an important determinant for catabolite repression in Escherichia coli. Mol. Microbial. 10: 341-350 https://doi.org/10.1111/j.1365-2958.1993.tb01960.x
  11. Johnson, C. M. and R. T. Schleif. 1995. In vivo induction kinetics of the arabinose promoters in Escherichia coli. J. Bacterial. 177: 3438-3442 https://doi.org/10.1128/jb.177.12.3438-3442.1995
  12. Khalilzadeh, R., S. A. Shojaosadati, N. Maghsoudi, J. Mohammadian-Mosaabadi, M. R. Mohammadi, A. Bahrami, N. Maleksabet, M. A. Nassiri-Khalilli, M. Ebrahimi, and H. Naderimanesh. 2004. Process development for production of recombinant human interferon-y expressed in Escherichia coli. J Ind. Microbial. Biotechnol. 31: 63-69 https://doi.org/10.1007/s10295-004-0117-x
  13. Lichenstein, H. S., E. P. Hamilton, and N. Lee. 1987. Repression and catabolite gene activation in the araBAD operon. J Bacteriol. 169: 811-822 https://doi.org/10.1128/jb.169.2.811-822.1987
  14. Lim, H.-K., K.-H. Jung, D.-H. Park, and S.-I. Chung. 2000. Production characteristics of interferon-a using L-arabinose promoter system in a high-cell-density culture. Appl. Microbiol. Biotechnol. 53: 201-208 https://doi.org/10.1007/s002530050009
  15. Lim, H.-K., S.-U. Lee, S.-I. Chung, K.-H. Jung, and J.-H. Seo. 2004. Induction of the T7 promoter using lactose for production of recombinant plasminogen kringle 1-3 in Escherichia coli. J Microbiol. Biotechnol. 14: 225-230
  16. Manderson, D., R. Dempster, and Y. Chisti. 2006. Production of an active recombinant Aspin antigen in Escherichia coli for identifying animals resistant to nematode infection. Enzyme Microb. Technol. 38: 591-598 https://doi.org/10.1016/j.enzmictec.2005.03.029
  17. Newman, J. R. and C. Fuqua. 1999. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227: 197-203 https://doi.org/10.1016/S0378-1119(98)00601-5
  18. Paigen, K. 1966. Phenomenon of transient repression in Escherichia coli. J. Bacterial. 91: 1201-1209
  19. Panda, A. K., R. H. Khan, K. B. C. Appa Rao, and S. M. Totey. 1999. Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J Biotechnol. 75: 161-172 https://doi.org/10.1016/S0168-1656(99)00157-1
  20. Panda, A. K. 2003. Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv. Biochem. Eng. Biotechnol. 85: 43-93
  21. Park, J.-v, J.-S. Park, J.-H. Kim, S.-J. Jeong, J. Y. Chun, J.-H. Lee, and J.-H. Kim. 2005. Characterization of the catabolite control protein (CcpA) gene from Leuconostoc mesenteroides SYI. J. Microbiol. Biotechnol. 15: 749-755
  22. Patkar, A., N. Vijayasankaran, D. W.Urry, and F. Srienc.2002. Flow cytometry as a useful tool for process development: Rapid evaluation of expression systems. J Biotechnol. 93: 217-229 https://doi.org/10.1016/S0168-1656(01)00399-6
  23. Sanden, A. M., M. Bostrom, K. Markland, and G Larsson. 2005. Solubility and proteolysis of the Zb-MalE and ZbMalE31 proteins during overproduction in Escherichia coli. Biotechnol. Bioeng. 90: 239-247 https://doi.org/10.1002/bit.20433
  24. Schleif, R. 2000. Regulation of the L-arabinose operon of Escherichia coli. Trends Genet. 16: 559-565 https://doi.org/10.1016/S0168-9525(00)02153-3
  25. Schmidt, M., K. R. Babu, N. Khanna, S. Marten, and U. Rinas. 1999. Temperature-induced production of recombinant human insulin in high-cell density cultures of recombinant Escherichia coli. J. Biotechnol. 68: 71-83 https://doi.org/10.1016/S0168-1656(98)00189-8
  26. Shin, D., S. Lee, Y. Shin, and S. Ryu. 2006. Identification of a novel genetic locus affecting ptsG expression in Escherichia coli. J Microbiol. Biotechnol. 16: 795-798
  27. Sorensen, H. P.and K. K. Mortensen. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 115: 113-128 https://doi.org/10.1016/j.jbiotec.2004.08.004
  28. Tyler, B., W. F.Loomis Jr., and B. Magasanik. 1967. Transient repression ofthe lac operon. J. Bacteriol. 94: 2001-2011
  29. Tyler, B. and B. Magasanik. 1970. Physiological basis of transient repression of catabolite enzymes in Escherichia coli. J. Bacteriol. 102: 411-422
  30. Wycuff, D. R. and K. S. Matthews. 2000. Generation of an AraC-araBAD promoter-regulated T7 expression system. Anal. Biochem. 277: 67-73 https://doi.org/10.1006/abio.1999.4385
  31. Zhang, X. and R. Schleif. 1998. Catabolite gene activator protein mutations affecting activity ofthe araBAD promoter. J Bacteriol. 180: 195-200