Influence of Plant Species and Environmental Conditions on Epiphytic and Endophytic Pink-Pigmented Facultative Methylotrophic Bacterial Populations Associated with Field-grown Rice Cultivars

  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Poonguzhali, Selvaraj (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • 발행 : 2007.10.30

초록

The total methylotrophic population associated with rice plants from different cultivars was enumerated at three different stages: vegetative, flowering, and harvesting. The bacterial population in the leaf, rhizosphere soil, endophytic in the stem and roots, and epiphytic in the florets and grains were determined from four rice cultivars, Il-mi, Nam-pyeoung, O-dae, and Dong-jin, sampled from three different field sites. The methylotrophic bacteria isolated on AMS media containing 0.5% methanol as the sole carbon source uniformly showed three distinct morphologies, which were recorded as separate groups and their distribution among the various samples was determined using the ecophysiological index. The growth stage at the time of sampling had a more significant effect on the methylotrophic population and their distribution than the field site or cultivar. A similar effect was also observed for the PPFMs, where their population in different plant parts increased from V10 to R4 and then decreased towards stage R9. A canonical discriminant analysis of the PPFM population from different parts of rice showed clear variations among the cultivars, sampled sites, and growth stages, although the variations were more prominent among the growth stages.

키워드

참고문헌

  1. Corpe, W. A. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62: 243-248 https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
  2. Counce, P. A., T. C. Keisling, and A. J. Mitchell. 2000. A uniform, objective, and adaptive system for expressing rice development. Crop Sci. 40: 436-443 https://doi.org/10.2135/cropsci2000.402436x
  3. De Leij, F. A. A. M., J. M. Whipps, and J. M. Lynch. 1993. The use of colony development for the characterization of bacterial communities in soils and roots. Microb. Ecol. 27: 81-97
  4. Elbeltagy, A., K. Nishioka, H. Suzuki, T. Sato, Y. I. Sato, H. Morisaki, H. Mitsui, and K. Minamisawa. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46: 617-629 https://doi.org/10.1080/00380768.2000.10409127
  5. Germida, J. J. and S. D. Siciliano. 2001. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol.Fertil.Soils 33: 410-415 https://doi.org/10.1007/s003740100343
  6. Glick, B. R., C. B. Jacobson, M. M. K. Schwarze, and J. J. Pasternak. 1994. 1-Aminocyclopropane-1-carboxylate deaminase mutants of plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can. J. Microbiol. 40: 911-915 https://doi.org/10.1139/m94-146
  7. Hengstmann, U., K. J. Chin, P. H. Janssen, and W. Liesack. 1999. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol. 65: 5050-5058
  8. Hirano, S. S. and C. D. Upper. 1991. Bacterial community dynamics, pp. 271-294. In J. H. Andrews and S. S. Hirano (eds.), Microbial Ecology of Leaves. Springer-Verlag, New York, NY
  9. Holland, M. A. and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98: 942-948 https://doi.org/10.1104/pp.98.3.942
  10. Holland, M. A. and J. C. Polacco. 1994. PPFMs and other contaminants: Is there more to plant physiology than just plant? Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 197-209 https://doi.org/10.1146/annurev.pp.45.060194.001213
  11. Holland, M. A., R. L. G. Long, and J. C. Polacco. 2002. Methylobacterium spp.: Phylloplane bacteria involved in cross-talk with the plant host? p. 125-135. In S. E. Lindow, E. I. Hecht-Poinar, and V. J. Elliot (eds.) Phyllosphere Microbiology. APS Press, St. Paul, Minn
  12. Idris, R., M. Kuffner, L. Bodrossy, M. Puschenreiter, S. Monchy, W. W. Wenzel, and A. Sessitsch. 2006. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst. Appl. Microbiol. 29: 634-644 https://doi.org/10.1016/j.syapm.2006.01.011
  13. Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70: 2667-2677 https://doi.org/10.1128/AEM.70.5.2667-2677.2004
  14. Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
  15. Kinkel, L. L., M. Wilson, and S. E. Lindow. 2000. Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microb. Ecol. 39: 1-11 https://doi.org/10.1007/s002489900182
  16. Koenig, R. L., R. O. Morris, and J. C. Polacco. 2002. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 184: 1832-1842 https://doi.org/10.1128/JB.184.7.1832-1842.2002
  17. Kuklinsky-Sobral, J., W. L. Araujo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251 https://doi.org/10.1111/j.1462-2920.2004.00658.x
  18. Lee, H. Y., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. B. Hoon, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079
  19. Lidstrom, M. E. and L. Chistoserdova. 2002. Plants in the pink: Cytokinin production by Methylobacterium. J. Bacteriol. 184: 1818 https://doi.org/10.1128/JB.184.7.1818.2002
  20. Ludemann, H., I. Arth, and W. Liesack. 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl. Environ. Microbiol. 66: 754-762 https://doi.org/10.1128/AEM.66.2.754-762.2000
  21. Madhaiyan, M., S. Poonguzhali, J. H. Ryu, and T. M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminasecontaining Methylobacterium fujisawaense. Planta 224: 268-278 https://doi.org/10.1007/s00425-005-0211-y
  22. Mano, H., F. Tanaka, A. Watanabe, H. Kaga, S. Okunish, and H. Morisaki. 2006. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ. 21: 86-100 https://doi.org/10.1264/jsme2.21.86
  23. Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192
  24. Obendorf, R. L., J. L Koch, R. J. Goreki, R. A. Amable, and M. T. Aveni. 1990. Methanol accumulation in maturing seeds. J. Exp. Bot. 41: 489-495 https://doi.org/10.1093/jxb/41.4.489
  25. Omer, Z. S., R. Tombolini, and B. Gerhardson. 2004. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol. Ecol. 47: 319-326 https://doi.org/10.1016/S0168-6496(04)00003-0
  26. Penalver, C. G. N., D. Morin, F. Cantet, O. Saurel, A. Milon, and J. A. Vorholt. 2006. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett. 580: 561-567 https://doi.org/10.1016/j.febslet.2005.12.062
  27. Pirttilä, A. M., H. Laukkanen, H. Pospiech, R. Myllylä, and A. Hohtola. 2000. Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl. Environ. Microbiol. 66: 3073-3077 https://doi.org/10.1128/AEM.66.7.3073-3077.2000
  28. Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2007. Production of acyl-homoserine lactone quorum sensing signals is wide-spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol. 17: 226-233
  29. Romanovskaya, V. A., S. M. Stolyar, Y. R. Malashenko, and T. N. Dodatko. 2001. The ways of plant colonization by Methylobacterium strains and properties of these bacteria. Microbiology 70: 221-227 https://doi.org/10.1023/A:1010441900060
  30. Ruiz Palomino, M., J. A. Lucas Garcýa, B. Ramos, F. J. Gutierrez Manero, and A. Probanza. 2005. Seasonal diversity changes in alder (Alnus glutinosa) culturable rhizobacterial communities throughout a phenological cycle. Appl. Soil Ecol. 29: 215-224 https://doi.org/10.1016/j.apsoil.2004.12.003
  31. Ryu, J. H., M. Madhaiyan, S. Poonguzhali, W. J. Yim, P. Indiragandhi, K. A. Kim, R. Anandham, J. C. Yun, K. H. Kim, and T. M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16: 1622-1628
  32. Scheid, D. and S. Stubner. 2001. Structure and diversity of Gram-negative sulfate-reducing bacteria on rice roots. FEMS Microbiol. Ecol. 36: 175-183 https://doi.org/10.1111/j.1574-6941.2001.tb00838.x
  33. Schmalenberger, A. and C. Tebbe. 2002. Bacterial community composition in the rhizosphere of a transgenic, herbicideresistant maize (Zea mays) and comparison to its nontransgenic cultivar Bosphore. FEMS Microbiol. Ecol. 40: 29-37 https://doi.org/10.1111/j.1574-6941.2002.tb00933.x
  34. Siciliano, S. D. and J. J. Germida. 1999. Taxonomic diversity of bacteria associated with the roots of field grown transgenic Brassica napus cv. Quest, compared to the nontransgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol. Ecol. 29: 263-272 https://doi.org/10.1111/j.1574-6941.1999.tb00617.x
  35. Sy, A., A. C. J. Timmers, C. Knief, and J. A. Vorholt. 2005. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71: 7245-7252 https://doi.org/10.1128/AEM.71.11.7245-7252.2005
  36. Whittenbury, R., S. L. Davies, and J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methaneutilizing bacteria. J. Gen. Microbiol. 61: 205-218 https://doi.org/10.1099/00221287-61-2-205